Chapter 2: MOTION ALONG A STRAIGHT LINE

Choose the correct answer:

1. Suppose the motion of a particle is described by the equation: $X = 20 + 4 t^2$. Find the instantaneous velocity at t =5 s?

(a) 16 m/s

(b) 60 m/s

(c) 40 m/s

(d) 36 m/s

2. A ball thrown vertically upward with an initial velocity of 12 m/s, what is the ball's maximum height?

(a) 7.35 m

(b) 14.7 m

(c) 0.61 m

(d) 1.22 m

3. A body moves along the x-axis with constant acceleration $\mathbf{a} = 4 \text{ m/s}^2$. At $\mathbf{t} = \mathbf{0}$ the body is at $x_0=5$ m and has velocity $v_0=3$ m/s. Find its position at t=2 s?

(a) 14 m

(b) 19 m

(c) 15 m

(d) 18 m

4. Suppose the velocity of the particle is given by the: $\mathbf{v} = \mathbf{10} + \mathbf{2} \mathbf{t}^2$ where \mathbf{v} is in m/s and \mathbf{t} is in s . Find the change in velocity of the particle in the time interval between $t_1 = 2$ s and $t_2 = 5 s$?

(a) 41 m/s

(b) 14 m/s

(c) 24 m/s

(d) 42 m/s

5. In question 4, Find the instantaneous acceleration when t = 2 s?

(a) 4 m/s^2

(b) 14 m/s^2

(c) 8 m/s²

(d) 18 m/s^2

6. Which pair of the following **initial and final positions** along the x-axis give a **positive** displacement?

(a) - 3m, +5m

(b) - 3m, - 4m

(c) 5m, - 3m

(d) 4m, 3m

7. You walk a distance 1.22 m in 1 s and then run a distance 3.05 m in 1 s, what is your average speed?

(a) 0.92 m/s

(b) 4.27 m/s

(c) 2.14 m/s

(d) 1.83 m/s

8. The following are equations of the velocity v(t) of a particle, in which situation the acceleration is constant?

(a) v = 3t + 6

(b) $v = 4 t^2$

(c) $v = 3t^2 - 4t$ (d) $v = 5t^3 - 3$

9. A particle's position on the x-axis is given by $X = 8 - 5 t + 25 t^2$, with X in meters and t in seconds. Find the particles velocity function?

(a) v = -5 + 25 t

(b) v = -5 + 50 t

(c) v = 8 - 5 + 25 t (d) v = 8 + 5 + 50 t

			If to 9.8 m/s ² , if it starts from rest light? ($V_{light} = 3 \times 10^8 \text{ m/s}$)
(a) 3.1 x 10 ⁵ s	(b) $3.1 \times 10^7 \text{ s}$	(c) $3.1 \times 10^6 \text{ s}$	(d) $3.1 \times 10^4 \text{ s}$
11. In question	10, how far will the	rocket ship travel?	
(a) 4.6 x 10 ¹³ m	(b) 4.6 x 10 ¹⁰ m	(c) 4.6 x 10 ¹² m	(d) 4.6 x 10 ¹¹ m
	vertically upward wit maximum height?	th an initial velocity of	12 m/s, how long does the ball
(a) 0.74 s	(b) 1.35 s	(c) 0.82 s	(d) 1.22 s
_		eleration covered a di ed if the final speed	stance between two points 60 m was 15 m/s?
(a) -10 m/s	(b) -5 m/s	(c) 5 m/s	(d) 17.5 m/s
(a) $\frac{dx}{dt}$	nneous acceleration (b) $\frac{d}{dt} \left(\frac{d^2x}{dt^2} \right)$		(d) $\frac{d}{dt} \left(\frac{dx}{dt} \right)$
	ty of the particle in th	ne time interval t ₁ =2 s	quation: $X = 20 + 4 t^2$. Find the s to $t_2 = 5 s$?
(a) 29 m/s	(b) 28 m/s	(c) 84 m/s	(d) 10 m/s
16. In question	15 , Find the instant	aneous velocity at	t =5 s ?
(a) 16 m/s	(b) 60 m/s	(c) 40 m/s	(d) 36 m/s
17. A rock is drop to fall the first		ne top of a 100 m tal	building , how long does it take
(a) 3.2 s	(b) 10.2 s	(c) 20.4 s	(d) 4.5 s
18. The following the particle is	-	e position of a particle	, in which situation the velocity of
(a) $x = 4 t^2 - 2$	(b) $x = -2 t^3$	(c) $x = -3 t - 2$	(d) $x = 4 t^{-2}$
19. A ball thrown maximum heig		vith an initial velocity	of 12 m/s, what is the ball's
(a) 7.35 m	(b) 14.7 m	(c) 0.61 m	(d) 1.22 m

	s along the x-axis with as velocity v = 3 m/s		$a = 4 \text{ m/s}^2$. At $t = 0$ the body is $t = 2 \text{ s}$?
(a) 14 m	(b) 19 m	(c) 15 m	(d) 18 m
21. In question 20	, where is the body w	when its velocity is 5 n	n/s?
(a) 7 m	(b) 9 m	(c) 11 m	(d) 2 m
22. A man runs a dis mi/hr?	stance of 1 mile in exa	actly 4 minutes , Wha	t is his average velocity in
(a) 900 mi/hr	(b) 15 mi/hr	(c) 6.71 mi/hr	(d)15000 mi/hr
	stance of 73.2 m at a rall displacement ?	speed of 1.22 m/s a	nd then run 73.2 m in 24 s .
(a) 97.2 m	(b) 73.2 m	(c) 146.4 m	(d) zero
24. In question 2	3, what is the time in	iterval from the start	to the end?
(a) 24 s	(b) 84 s	(c) 36 s	(d) 4.27 s
m/s to 12 m/s?			nen the velocity changes from 8
(a) 1 m/s^2	(b) 3.33 m/s ²	(c) 5 m/s ²	(d) 2 m/s^2
26. What is the ii was 15 m/s?	nitial speed of a car	moving a distance of	f 60 m in 6 s if the final speed
(a) -10 m/s	(b) -5 m/s	(c) 5 m/s	(d) 17.5 m/s
	stance moved by a boat is the magnitude of		as 56.7 m with initial speed of
(a) 8.82 m/s^2	(b) 4.41 m/s^2	(c) 17.63 m/s ²	(d) 2.21 m/s ²
28. A pipe droppe was it dropped fr	_	ick the ground with a	speed of 24 m/s. what height
(a) 58.8 m	(b) 2.44 m	(c) 1.22 m	(d) 29.4 m
29. What is the ii m in 0.2 s?	nitial speed of a ball	thrown upward vertic	ally reaching a height of 0.544
(a) 4.68 m/s	(b) 3.7 m/s	(c) 2.1 m/s	(d) 0.74 m/s

30.	The initial and the final positions of a particle moving along the x-axis are -2 m,	10
m	1, then its displacement Δx equals:	

(a) + 12 m

(b) +8 m

(c) -12 m

(d) -8 m

31. In which situation of the following the displacement is **positive**?

Situation	X ₁ (m)	X ₂ (m)
Α	-3	5
В	-3	-7
С	-3	-3
D	2	5

(a) A and B

(b) A and C

(c) **A** and **D**

(d) B and C

32. The position of a body moving along the x axis is given by $\mathbf{x} = \mathbf{3} \mathbf{t} - \mathbf{4} \mathbf{t}^2 + \mathbf{t}^3$. Its position at $\mathbf{t} = \mathbf{2} \mathbf{s}$ is:

(a) 6 m

(b) 2 m

(c) -6 m

(d) -2 m

33. In question **32**, the displacement of the object in the time interval t = 0 to t = 4 s is:

(a) $\Delta x = 3m$

(b) $\Delta x = 12m$

(c) $\Delta x = -3m$

(d) $\Delta x = -12m$

34. A car travelled 40 km in 0.5 h, then travelled 40 km in 1 h. Its average speed is:

(a) 26.7 km/h

(b) 160 km/h

(c) 80 km/h

(d) 53.3 km/h

35. A car starts from point **A** moved a distance **50 km** to point **B** then returns to point **A** in a time interval of **2 hours**. Its **average velocity** is:

(a) zero

(b) 50 km/h

(c) 100 km/h

(d) 25 km/h

36. The position of a particle moving along the x-axis is given by: $\mathbf{x} = 2 \mathbf{t}^3$. Its acceleration is:

(a) $6t^2$ m/s²

(b) 12t m/s²

(c) constant

(d) zero

37. A ball dropped from a building ,its **velocity and position** after **1 s** are:

(a) V = -9.8 m/sv = -9.8 m

(b) V = -4.9 m/sv = -9.8 m (c) V = -9.8 m/sy= -4.9 m (d) V= -4.9 m/s v= -4.9 m

	s an initial velocity V ₀ = x 10⁶ m/s , then its acce		distance 0.01 m , if the final
(a) 1995 x 10 ¹⁴ m/s ²	(b) 195 x 10 ⁶ m/s ²	(c) $95 \times 10^6 \text{ m/s}^2$	(d) $1.995 \times 10^{14} \text{ m/s}^2$
39. A particle movin	ng in the + x direction	with increasing spe	ed :

- (a) Its velocity is positive and acceleration is negative
- (b) Its velocity is negative and acceleration positive
- (c) Its velocity and acceleration are both positive
- (d) Its velocity is positive and acceleration is zero
- 40. In which situation of the following the **velocity** is in the **negative** x direction?

Situation	Position of the particle
Α	$X = -2 t^2 - 2$
В	$X = 3 t^3 - 5$
С	$X = -2t^{-2} + 1$
D	X = -5 + 5t

(a) A

(b) **B**

(c) **C**

(d) **D**

- 41. A ball is thrown vertically upward. Its **displacement** is:
- (a) positive during rising and negative during falling
- (b) negative during rising and positive during falling
- (c) positive during rising and falling
- (d) negative during rising and falling
- A man walks 4 m from point A due east, then 3 m due north. What is his **displacement** from the point A?
- (a) 7 m
- (b) 6 m
- (c) 5 m
- (d) 10 m
- The following are equations of the velocity v(t) of a particle, in which situation the acceleration is constant?
- (a) v = 3t + 6
- (b) $v = 4 t^2$ (c) $v = 3 t^2 4 t$ (d) $v = 5 t^3 3$
- You are throwing a ball straight up in the air. At the highest point, the ball's velocity and acceleration are:
- (a) v = 0a = -a
- (b) $v = v_0$ (c) $v > v_0$ (d) $v < v_0$ a = 0 a = -g a < -g
- If the sign of the velocity and acceleration of a particle are opposite, then the speed of the particle
- (a) is zero
- (b) decreases
- (c) increases
- (d) does not change

(b) ∆x is negativ	e (c) Δx is zero	(d) $\Delta x = 12m$
	_	0.5 h , then walked back to the initial
(b) 0	(c) 4 km	(d) 2 km
1 62 , your average	speed is :	
(b) 1.6 km/h	(c) 3.2 km/h	(d) 0
		x_2 = 100 m in the time interval from
(b) 30 m/s	(c) 45 m/s	(d) 25 m/s
of a particle is giver	n by: x(t)= 10 + t	² ,the instantaneous acceleration
(b) 6 m/s ²	(c) 4 m/s ²	(d) 2 m/s^2
I acceleration is:		
(b) -9.8 m/s^2	(c) $+9.8 \text{ m/s}^2$	(d) -32 m/s^2
uation of the followir	ng the velocity is c	constant ?
Situation A B C	X = 3 t - 2 $X = 2 t^2 - 2$	particle
D	$X = 2 - 5 t^2$	
(b) B	(c) C	(d) D
<u>-</u>		ertion a distance 500 m , the final
(b) 2.5 m/s ²	(c) 3.6 m/s ²	(d) 4.9 m/s^2
n that represents the	e motion with cor	nstant acceleration is:
(b) $v = v_0 + 2a(x - \frac{1}{2}a^2)$	(c) $x - x_0$	$= v_0 t + \frac{1}{2}at^2 \qquad (d) \ v = v_0 + \frac{1}{2}at^2$
	a distance of 2 km 5 h. Your overall dis (b) 0 1 62, your average (b) 1.6 km/h n of a car changes for a particle is given (b) 30 m/s of a particle is given (b) 6 m/s² I acceleration is: (b) - 9.8 m/s² I ation of the following Situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation (b) 2.5 m/s² The that represents the following situation sit	(b) 1.6 km/h (c) 3.2 km/h n of a car changes from $\mathbf{x_1} = 20$ m to verage velocity of the car is: (b) 30 m/s (c) 45 m/s of a particle is given by: $\mathbf{x(t)} = 10 + \mathbf{t}$ (b) 6 m/s ² (c) 4 m/s ² I acceleration is: (b) -9.8 m/s ² (c) +9.8 m/s ² I acceleration of the following the velocity is one of the following the veloc

46. A particle moves from $x_1 = 5$ m to $x_2 = 12$ m, then:

	When an o	object is thrown vertically upward ↑ , while it is rising :
(a) it	s velocity ar	nd acceleration are both upward ↑
(b) it	s velocity is	upward \uparrow and its acceleration is downward \downarrow
(c) its	s velocity ar	nd acceleration are both downward \downarrow
(d) it	s velocity is	downward \downarrow and its acceleration is upward \uparrow
Are t	he followii	ng statements (True ✓) or (False *) ?
56.	Speed is the	he magnitude of instantaneous velocity.
(a) Tr	rue	(b) False
57.	Average a	cceleration is the ratio of (النسـبة بـين) the change of velocity Δv to the time
int	erval ∆t.	
(a) Tr	rue	(b) False
58.	The free	fall motion is an example of motion along a straight line with constant
ac	celeration.	
	cererationi	
(a) Tr	_	(b) False
	_	(b) False