Chapter 2: MOTION ALONG A STRAIGHT LINE Choose the correct answer: **1.** Suppose the motion of a particle is described by the equation: $X = 20 + 4 t^2$. Find the instantaneous velocity at t =5 s? (a) 16 m/s (b) 60 m/s (c) 40 m/s (d) 36 m/s 2. A ball thrown vertically upward with an initial velocity of 12 m/s, what is the ball's maximum height? (a) 7.35 m (b) 14.7 m (c) 0.61 m (d) 1.22 m 3. A body moves along the x-axis with constant acceleration $\mathbf{a} = 4 \text{ m/s}^2$. At $\mathbf{t} = \mathbf{0}$ the body is at $x_0=5$ m and has velocity $v_0=3$ m/s. Find its position at t=2 s? (a) 14 m (b) 19 m (c) 15 m (d) 18 m **4.** Suppose the velocity of the particle is given by the: $\mathbf{v} = \mathbf{10} + \mathbf{2} \mathbf{t}^2$ where \mathbf{v} is in m/s and \mathbf{t} is in s . Find the change in velocity of the particle in the time interval between $t_1 = 2$ s and $t_2 = 5 s$? (a) 41 m/s (b) 14 m/s (c) 24 m/s (d) 42 m/s 5. In question 4, Find the instantaneous acceleration when t = 2 s? (a) 4 m/s^2 (b) 14 m/s^2 (c) 8 m/s² (d) 18 m/s^2 **6.** Which pair of the following **initial and final positions** along the x-axis give a **positive** displacement? (a) - 3m, +5m (b) - 3m, - 4m (c) 5m, - 3m (d) 4m, 3m 7. You walk a distance 1.22 m in 1 s and then run a distance 3.05 m in 1 s, what is your average speed? (a) 0.92 m/s (b) 4.27 m/s (c) 2.14 m/s (d) 1.83 m/s **8.** The following are equations of the velocity v(t) of a particle, in which situation the acceleration is constant? (a) v = 3t + 6 (b) $v = 4 t^2$ (c) $v = 3t^2 - 4t$ (d) $v = 5t^3 - 3$ **9.** A particle's position on the x-axis is given by $X = 8 - 5 t + 25 t^2$, with X in meters and t in seconds. Find the particles velocity function? (a) v = -5 + 25 t (b) v = -5 + 50 t (c) v = 8 - 5 + 25 t (d) v = 8 + 5 + 50 t | | | | If to 9.8 m/s ² , if it starts from rest light? ($V_{light} = 3 \times 10^8 \text{ m/s}$) | |--------------------------------------|---|---|--| | (a) 3.1 x 10 ⁵ s | (b) $3.1 \times 10^7 \text{ s}$ | (c) $3.1 \times 10^6 \text{ s}$ | (d) $3.1 \times 10^4 \text{ s}$ | | 11. In question | 10, how far will the | rocket ship travel? | | | (a) 4.6 x 10 ¹³ m | (b) 4.6 x 10 ¹⁰ m | (c) 4.6 x 10 ¹² m | (d) 4.6 x 10 ¹¹ m | | | vertically upward wit maximum height? | th an initial velocity of | 12 m/s, how long does the ball | | (a) 0.74 s | (b) 1.35 s | (c) 0.82 s | (d) 1.22 s | | _ | | eleration covered a di
ed if the final speed | stance between two points 60 m was 15 m/s? | | (a) -10 m/s | (b) -5 m/s | (c) 5 m/s | (d) 17.5 m/s | | (a) $\frac{dx}{dt}$ | nneous acceleration (b) $\frac{d}{dt} \left(\frac{d^2x}{dt^2} \right)$ | | (d) $\frac{d}{dt} \left(\frac{dx}{dt} \right)$ | | | ty of the particle in th | ne time interval t ₁ =2 s | quation: $X = 20 + 4 t^2$. Find the s to $t_2 = 5 s$? | | (a) 29 m/s | (b) 28 m/s | (c) 84 m/s | (d) 10 m/s | | 16. In question | 15 , Find the instant | aneous velocity at | t =5 s ? | | (a) 16 m/s | (b) 60 m/s | (c) 40 m/s | (d) 36 m/s | | 17. A rock is drop to fall the first | | ne top of a 100 m tal | building , how long does it take | | (a) 3.2 s | (b) 10.2 s | (c) 20.4 s | (d) 4.5 s | | 18. The following the particle is | - | e position of a particle | , in which situation the velocity of | | (a) $x = 4 t^2 - 2$ | (b) $x = -2 t^3$ | (c) $x = -3 t - 2$ | (d) $x = 4 t^{-2}$ | | 19. A ball thrown maximum heig | | vith an initial velocity | of 12 m/s, what is the ball's | | (a) 7.35 m | (b) 14.7 m | (c) 0.61 m | (d) 1.22 m | | | s along the x-axis with as velocity v = 3 m/s | | $a = 4 \text{ m/s}^2$. At $t = 0$ the body is $t = 2 \text{ s}$? | |--|---|---------------------------------|--| | (a) 14 m | (b) 19 m | (c) 15 m | (d) 18 m | | 21. In question 20 | , where is the body w | when its velocity is 5 n | n/s? | | (a) 7 m | (b) 9 m | (c) 11 m | (d) 2 m | | 22. A man runs a dis mi/hr? | stance of 1 mile in exa | actly 4 minutes , Wha | t is his average velocity in | | (a) 900 mi/hr | (b) 15 mi/hr | (c) 6.71 mi/hr | (d)15000 mi/hr | | | stance of 73.2 m at a rall displacement ? | speed of 1.22 m/s a | nd then run 73.2 m in 24 s . | | (a) 97.2 m | (b) 73.2 m | (c) 146.4 m | (d) zero | | 24. In question 2 | 3, what is the time in | iterval from the start | to the end? | | (a) 24 s | (b) 84 s | (c) 36 s | (d) 4.27 s | | m/s to 12 m/s? | | | nen the velocity changes from 8 | | (a) 1 m/s^2 | (b) 3.33 m/s ² | (c) 5 m/s ² | (d) 2 m/s^2 | | 26. What is the ii was 15 m/s? | nitial speed of a car | moving a distance of | f 60 m in 6 s if the final speed | | (a) -10 m/s | (b) -5 m/s | (c) 5 m/s | (d) 17.5 m/s | | | stance moved by a boat is the magnitude of | | as 56.7 m with initial speed of | | (a) 8.82 m/s^2 | (b) 4.41 m/s^2 | (c) 17.63 m/s ² | (d) 2.21 m/s ² | | 28. A pipe droppe was it dropped fr | _ | ick the ground with a | speed of 24 m/s. what height | | (a) 58.8 m | (b) 2.44 m | (c) 1.22 m | (d) 29.4 m | | 29. What is the ii m in 0.2 s? | nitial speed of a ball | thrown upward vertic | ally reaching a height of 0.544 | | (a) 4.68 m/s | (b) 3.7 m/s | (c) 2.1 m/s | (d) 0.74 m/s | | 30. | The initial and the final positions of a particle moving along the x-axis are -2 m, | 10 | |-----|---|----| | m | 1, then its displacement Δx equals: | | (a) + 12 m (b) +8 m (c) -12 m (d) -8 m **31.** In which situation of the following the displacement is **positive**? | Situation | X ₁ (m) | X ₂ (m) | |-----------|--------------------|--------------------| | Α | -3 | 5 | | В | -3 | -7 | | С | -3 | -3 | | D | 2 | 5 | (a) A and B (b) A and C (c) **A** and **D** (d) B and C **32.** The position of a body moving along the x axis is given by $\mathbf{x} = \mathbf{3} \mathbf{t} - \mathbf{4} \mathbf{t}^2 + \mathbf{t}^3$. Its position at $\mathbf{t} = \mathbf{2} \mathbf{s}$ is: (a) 6 m (b) 2 m (c) -6 m (d) -2 m **33.** In question **32**, the displacement of the object in the time interval t = 0 to t = 4 s is: (a) $\Delta x = 3m$ (b) $\Delta x = 12m$ (c) $\Delta x = -3m$ (d) $\Delta x = -12m$ 34. A car travelled 40 km in 0.5 h, then travelled 40 km in 1 h. Its average speed is: (a) 26.7 km/h (b) 160 km/h (c) 80 km/h (d) 53.3 km/h **35.** A car starts from point **A** moved a distance **50 km** to point **B** then returns to point **A** in a time interval of **2 hours**. Its **average velocity** is: (a) zero (b) 50 km/h (c) 100 km/h (d) 25 km/h **36.** The position of a particle moving along the x-axis is given by: $\mathbf{x} = 2 \mathbf{t}^3$. Its acceleration is: (a) $6t^2$ m/s² (b) 12t m/s² (c) constant (d) zero **37.** A ball dropped from a building ,its **velocity and position** after **1 s** are: (a) V = -9.8 m/sv = -9.8 m (b) V = -4.9 m/sv = -9.8 m (c) V = -9.8 m/sy= -4.9 m (d) V= -4.9 m/s v= -4.9 m | | s an initial velocity V ₀ =
x 10⁶ m/s , then its acce | | distance 0.01 m , if the final | |--|---|------------------------------------|--| | (a) 1995 x 10 ¹⁴ m/s ² | (b) 195 x 10 ⁶ m/s ² | (c) $95 \times 10^6 \text{ m/s}^2$ | (d) $1.995 \times 10^{14} \text{ m/s}^2$ | | 39. A particle movin | ng in the + x direction | with increasing spe | ed : | - (a) Its velocity is positive and acceleration is negative - (b) Its velocity is negative and acceleration positive - (c) Its velocity and acceleration are both positive - (d) Its velocity is positive and acceleration is zero - 40. In which situation of the following the **velocity** is in the **negative** x direction? | Situation | Position of the particle | |-----------|--------------------------| | Α | $X = -2 t^2 - 2$ | | В | $X = 3 t^3 - 5$ | | С | $X = -2t^{-2} + 1$ | | D | X = -5 + 5t | (a) A (b) **B** (c) **C** (d) **D** - 41. A ball is thrown vertically upward. Its **displacement** is: - (a) positive during rising and negative during falling - (b) negative during rising and positive during falling - (c) positive during rising and falling - (d) negative during rising and falling - A man walks 4 m from point A due east, then 3 m due north. What is his **displacement** from the point A? - (a) 7 m - (b) 6 m - (c) 5 m - (d) 10 m - The following are equations of the velocity v(t) of a particle, in which situation the acceleration is constant? - (a) v = 3t + 6 - (b) $v = 4 t^2$ (c) $v = 3 t^2 4 t$ (d) $v = 5 t^3 3$ - You are throwing a ball straight up in the air. At the highest point, the ball's velocity and acceleration are: - (a) v = 0a = -a - (b) $v = v_0$ (c) $v > v_0$ (d) $v < v_0$ a = 0 a = -g a < -g - If the sign of the velocity and acceleration of a particle are opposite, then the speed of the particle - (a) is zero - (b) decreases - (c) increases - (d) does not change | (b) ∆x is negativ | e (c) Δx is zero | (d) $\Delta x = 12m$ | |--|--|--| | | _ | 0.5 h , then walked back to the initial | | (b) 0 | (c) 4 km | (d) 2 km | | 1 62 , your average | speed is : | | | (b) 1.6 km/h | (c) 3.2 km/h | (d) 0 | | | | x_2 = 100 m in the time interval from | | (b) 30 m/s | (c) 45 m/s | (d) 25 m/s | | of a particle is giver | n by: x(t)= 10 + t | ² ,the instantaneous acceleration | | (b) 6 m/s ² | (c) 4 m/s ² | (d) 2 m/s^2 | | I acceleration is: | | | | (b) -9.8 m/s^2 | (c) $+9.8 \text{ m/s}^2$ | (d) -32 m/s^2 | | uation of the followir | ng the velocity is c | constant ? | | Situation A B C | X = 3 t - 2
$X = 2 t^2 - 2$ | particle | | D | $X = 2 - 5 t^2$ | | | (b) B | (c) C | (d) D | | <u>-</u> | | ertion a distance 500 m , the final | | (b) 2.5 m/s ² | (c) 3.6 m/s ² | (d) 4.9 m/s^2 | | n that represents the | e motion with cor | nstant acceleration is: | | (b) $v = v_0 + 2a(x - \frac{1}{2}a^2)$ | (c) $x - x_0$ | $= v_0 t + \frac{1}{2}at^2 \qquad (d) \ v = v_0 + \frac{1}{2}at^2$ | | | a distance of 2 km 5 h. Your overall dis (b) 0 1 62, your average (b) 1.6 km/h n of a car changes for a particle is given (b) 30 m/s of a particle is given (b) 6 m/s² I acceleration is: (b) - 9.8 m/s² I ation of the following Situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation A B C D (b) B from rest, travels of the following situation (b) 2.5 m/s² The that represents the following situation sit | (b) 1.6 km/h (c) 3.2 km/h n of a car changes from $\mathbf{x_1} = 20$ m to verage velocity of the car is: (b) 30 m/s (c) 45 m/s of a particle is given by: $\mathbf{x(t)} = 10 + \mathbf{t}$ (b) 6 m/s ² (c) 4 m/s ² I acceleration is: (b) -9.8 m/s ² (c) +9.8 m/s ² I acceleration of the following the velocity is one veloc | **46.** A particle moves from $x_1 = 5$ m to $x_2 = 12$ m, then: | | When an o | object is thrown vertically upward ↑ , while it is rising : | |----------------|---------------|--| | (a) it | s velocity ar | nd acceleration are both upward ↑ | | (b) it | s velocity is | upward \uparrow and its acceleration is downward \downarrow | | (c) its | s velocity ar | nd acceleration are both downward \downarrow | | (d) it | s velocity is | downward \downarrow and its acceleration is upward \uparrow | | Are t | he followii | ng statements (True ✓) or (False *) ? | | 56. | Speed is the | he magnitude of instantaneous velocity. | | (a) Tr | rue | (b) False | | | | | | 57. | Average a | cceleration is the ratio of (النسـبة بـين) the change of velocity Δv to the time | | int | erval ∆t. | | | (a) Tr | rue | (b) False | | 58. | The free | fall motion is an example of motion along a straight line with constant | | ac | celeration. | | | | cererationi | | | (a) Tr | _ | (b) False | |