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• Absolute Value 
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Let 𝐴 = −8, −6, −
12

4
, −

3

4
, 0,

3

8
,

1

2
, 1, 2, 5, 6 .  

List the elements from A that belong to each set. 

a) Natural numbers      

b) b) Whole numbers    

c) c) Integers     

d) Rational numbers       

e) Irrational numbers      

f) Real numbers . 

Example 1: Identifying Sets of Numbers 
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•Exponents 

•What are ‘Exponents’? 

•Exponents : 
             an = a ∙ a ∙ a ∙ a ∙ … ∙ a 
                      n factors of a 
This is known as exponential notation. Put simply, an means a is 
multiplied by itself n times. In math, we say an is a to the nth power. 

•In the expression an,  

•a is known as the base, and n is known as the exponent 
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1Homework 

Evaluate each exponential expression ,and identify the base and the exponent. 

a) 𝟒𝟑  

     

b)(−𝟔)𝟐 

      

c)−𝟔𝟐    

     

d)𝟒. 𝟑𝟐   

     

e) (4.3)
𝟐
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Rules for Order of Operations 

Let’s summarize the order in which we should perform operations when simplifying or evaluating expressions. 

 

Step 1   Treat both parts of fractions separately 

           Work separately above and below each fraction bar 

Step 2   Parentheses (       )  

           Use the rules that follow within each set of parentheses or square brackets first. Start with the innermost 

set and work outward. 

Step 3   Exponents xy 

           Simplify all powers. Work from left to right. 

Step 4   Roots √   

               Simplify all roots. Work from left to right. 

Step 5   Multiplications and divisions × ÷  

             Do any multiplications or divisions in order. Work from left to right. 

Step 6   Additions and subtractions  +  – 

              Do any additions or subtractions in order. Work from left to right. 
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Example 2: 

Evaluate each expression. 

𝑎) 6 ÷ 3 + 23. 5    

      

 
𝑏) 8 + 6 ÷ 7 ∙ 3 − 6 
 
 

𝑐) 
4+32

6−5∙3
                  

    

 

d)  
− −3 3+(−5)

2 −8 −5(3)
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Homework  2: Using order of Operations 

Evaluate each expression for 𝑥 = −2, 𝑦 = 5, 𝑎𝑛𝑑 𝑧 = −3 

 

𝑎) − 4𝑥2 − 7𝑦 + 4𝑧   
        
 
 

𝑏)
2 𝑥 − 5 2 + 4𝑦

𝑧 + 4
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The Commutative Property of Addition 

Look at this expression: 

                        4 + 5 = 9 

is the same as 5 + 4 = 9 

This is an example of commutative property. It 

means that we can move the numbers around in an 

addition sum and still get the same answer.  
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•The Commutative Property of Multiplication and the Closure Property 
•As with addition, the commutative property works for multiplication too. 
 

4 x 5 = 20 is the same as5 x 4 = 20 
 
 

 . 
•Another property of real numbers,  
the closure property, states that those answers will be real numbers. 
 
 
 
•The sum of two real numbers is a real number –the additive closure property. 
•The product of two real numbers is a real number –the multiplicative closure property. 
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The Associative Property of Addition 

Look at this expression: 

3x + (4x + 6)is the same as (3x + 4x) + 6 

 

This is an example of associative property. 

 

The Associative Property of Multiplication 

As with addition, the associative property works for multiplication too. 

 

3 (2x )is the same as(3 ×2 )x 

The associative property of real numbers allows us to regroup numbers 

in additions and multiplications, making such operations simpler. 
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Additive Identity  
Now let’s consider the identity property. The identity property for addition is a number 

that when added to any number does not change the value of that number. 
 

The additive identity for real numbers is 0. This means that adding 0 to any number 

doesn’t change that number’s value. 

  

Example: 

3+0=3 

458+0=458 
 

In general terms, there exists a unique real number 0 such that 

 

This is known as the additive identity 
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Multiplicative Identity 

 

Is there an identity property for multiplications too? 

Yes, there is multiplicative identity. It means that when we multiply 1 by 

any number we get the same number, which means that it keeps its 

identity. 

Example: 

8 ×1 = 8 

254×1 = 254 

 

In general terms, there exists a unique real number 1 such that 

This is known as the multiplicative identity 
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Use the commutative and associative properties to simplify 

each expression  

𝑎) 6 + 9 + 𝑥    
       

𝑏) 
5

8
16𝑦   

     

𝑐)  − 10𝑝(
6

5
) 

Example 3  
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Rewrite each expression using the distributive property and 

simplify, if possible.  

 

 

𝑎) 3 𝑥 + 𝑦   
        
 
 
𝑏)  − 𝑚 − 4𝑛   
  
 

Homework 3  
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𝑐) 
1

3

4

5
𝑚 −

3

2
𝑛 − 27 =    

 
 
 
 
 
𝑑) 7𝑝 + 21 = 
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Absolute value is the distance of any number from 0 on a number line in any 

direction. The direction doesn’t change the distance; it is always positive. So 

whether we are finding absolute value for negative or positive numbers, the 

absolute value is always positive.  
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: 
a) 2𝑥 − 3𝑦 = 
 
 
 
2 𝑥 − |3𝑦|

|𝑥𝑦|
= 



If P and Q are two points on a number line with coordinates a and b, 

respectively, then the distance d(P,Q) between them is given by the 

following  

d(P,Q)=|a-b|=     or   d(P,Q)=|b-a| 

Example 5:  

Find the distance between -5 and 8. 
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 if : P (1 ,  2)  and  Q (3 ,  4) The distance between P  and  Q. is 



 if : P (1 ,  0)  and  Q (0 ,  4) The distance between P  and  Q. is 



 if : P (-9,  0)  and  Q (-10 ,  4) The distance between P  and  Q. is 



Order on the Number Line  
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If the real number a is to the left of the real number b on  a number line, then 
𝑎 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑏 , 𝑤𝑟𝑖𝑡𝑡𝑒𝑛  𝑎 < 𝑏 

If a is to the right of b, then  
𝑎 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑏, 𝑤𝑟𝑖𝑡𝑡𝑒𝑛  𝑎 > 𝑏  

Also we have  
𝑎 ≤ 𝑏  𝑎 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑏  
𝑎 ≥ 𝑏  𝑎 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑏  
𝑎 < 𝑏 < 𝑐 , 𝑏 𝑖𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑎𝑛𝑑 𝑐. 


