1.6	Rational Exponents الاسس الكسرية
	 Negative Exponents and the Quotient Rule
	Rational Exponents
	 Complex Fractions Revisited
	Radical Notation
	Simplified Radicals
	 Operations with Radicals
	 Rationalizing Denominators

Negative Exponents

Suppose that *a* is a nonzero real number and *n* any integer.

$$a^{-n} = \frac{1}{a^n}, \qquad a^n = \frac{1}{a^{-n}}, \qquad (\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Example 1: Using the Definition of a negative exponent. Evaluate each expression. In parts a,b,c,d and (e), write the expression without negative exponents. Assume all variables represent nonzero real numbers.

a) 4^{-2} b) -4^{-2} c) $(\frac{2}{5})^{-3}$ d) $(xy)^{-3}$ e) xy^{-3}

Quotient Rule

Suppose that m and n are integer and a is a nonzero real number.

$$\frac{a^m}{a^n} = a^{m-n}, \qquad \qquad \frac{a^m}{a^{-n}} = a^{m+n}$$

<u>Homework 1</u>: Using the Quotient Rule.

Simplify each expression. Assume all variables represent nonzero real numbers.

a) $\frac{12^5}{12^2}$ $b)rac{a^5}{a^{-8}}$ c) $\frac{16m^{-9}}{12m^{11}}$

 $d)\frac{25r^7z^5}{10r^9z}$

Example 2: Using the Rules for Exponents.

Simplify each expression. Write answers without negative exponents. Assume all variables represent nonzero real numbers.

a) $3x^{-2}(4^{-1}x^{-5})^2$

$$b)rac{12p^3q^{-1}}{8p^{-2}q}$$

c)
$$\frac{(3x^2)^{-1}(3x^5)^{-2}}{(3^{-1}x^{-2})^2}$$

Rational Exponents Definitions and Rules for Exponents

Suppose that r and s represent rational numbers. The results here are valid for all positive numbers a and b.

Product rule 1 $a^r \cdot a^s = a^{r+s}$ Product rule 2 $(a^r)^s = a^{rs}$ Quotient rule $\frac{a^r}{a^s} = a^{r-s}$, $(ab)^r = a^r b^r$, $(\frac{a}{b})^r = \frac{a^r}{b^r}$ Negative exponent $a^{-r} = \frac{1}{a^r}$

The expression $a^{\frac{1}{n}}$ $\overline{a^{\frac{1}{n}}}$, n Even

If *n* is an even positive integer, and if a > 0, then $a^{\frac{1}{n}}$ is the positive real number whose nth power is a, That is $(a\overline{n})^n = a$.

(In this case $a^{\frac{1}{n}}$ is the principle nth root of a) $a^{\frac{1}{n}} = \sqrt[n]{a}$

 $a^{\frac{1}{n}}$, *n* Odd If *n* is an odd positive integer, and *a* is any nonzero real number, then $a^{\overline{n}}$ is the positive or negative real number whose nth power is a, That is $(a^{\hat{n}})^n = a$. For all positive integers $n, 0^{\overline{n}} = 0$

<u>Homework 2</u>: Using the definition of $a^{\frac{1}{n}}$

Evaluate each expression.

b) $-100^{\frac{1}{2}}$ a) $36^{\frac{1}{2}}$ $c) - (225)^{\frac{1}{2}}$ $d)625^{1/4}$ $e)(-1296)^{\frac{1}{4}}$ $f)-1296^{\frac{1}{4}}$ $h) - 32^{\frac{1}{5}}$ $(-27)^{\frac{1}{3}}$

The expression $a^{\frac{m}{n}}$

Let m be any integer, n be any positive integer , and a be any real number for which $a^{\frac{1}{n}}$ is a real number.

$$a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (a^m)^{\frac{1}{n}}$$

Example 3: Using the definition of $a^{\overline{n}}$ **Evaluate each expression.** a) $125^{\frac{2}{3}}$ **b**) $32^{\frac{7}{5}}$ $c) - 81^{\frac{3}{2}}$ $d) (-27)^{2/3}$ $f(-4)^{\frac{5}{2}}$ $e)16^{\frac{-3}{4}}$

Homework 3: Using the Rules for exponents

Simplify each expression. Assume all variables represent positive real numbers.

a)
$$\frac{27^{\frac{1}{3}} \cdot 27^{\frac{5}{3}}}{27^3}$$

$$b)81\frac{5}{4}\cdot 4^{-\frac{3}{2}}$$

$$c)6y^{\frac{2}{3}} \cdot 2y^{\frac{1}{2}}$$
$$d)(\frac{3m^{5/6}}{\frac{3}{y^{\frac{3}{4}}}})^{2}(\frac{8y^{3}}{m^{6}})^{\frac{2}{3}}$$

 $e)m^{\frac{2}{3}}(m^{\frac{7}{3}}+2m^{\frac{1}{3}})$

Example 4: Factoring Expressions with Negative or Rational Exponents

Factor out the least power of the variable or variable expression. Assume all variables represent positive real numbers.

a) $12x^{-2} - 8x^{-3}$ b) $4m^{\frac{1}{2}} + 3m^{\frac{3}{2}}$

$$c)(y-2)^{\frac{-1}{3}}+(y-2)^{\frac{2}{3}}$$

Complex Fractions Revisited

Negative exponents are sometimes used to write complex fractions.

Homework 4: Simplifying a Fraction with Negative Exponents

Simplify $\frac{(x+y)^{-1}}{x^{-1}+y^{-1}}$. Write the results with only positive exponents.

In this section we used rational exponents to express roots. An alternative notation for roots is radical notation.

<u>Radical Notation for $a^{1/n}$:</u>

Suppose that *a* is areal number, *n* is a positive integer, and $a^{1/n}$ is a real number.

$$a^{1/n} = \sqrt[n]{a}$$

<u>Radical Notation for $a^{m/n}$:</u>

Suppose that *a* is areal number, *m* is an integer, *n* is a positive integer, and $\sqrt[n]{a}$ is a real number.

$$a^{m/n} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

- In the radical $\sqrt[n]{a}$, the symbol $\sqrt[n]{b}$ is a radical symbol
- The number *a* is the radicand, and *n* is the index. We use the familiar notation \sqrt{a} instead of $\sqrt[2]{a}$ for the square root.
- For even of *n*(square roots, fourth roots, and so on),
- when *a* is positive, there are two *nth* roots, one positive and one negative. In such cases, the notation $\sqrt[n]{a}$ represents the positive root, the principal *nth* root.
- We write the negative root as $-\sqrt[n]{a}$.

Example 5: Evaluating Roots

Write each root using exponents and evaluate.

a) $\sqrt[4]{16}$ b) $-\sqrt[4]{16}$ c) $\sqrt[5]{-32}$ d) $\sqrt[3]{1000}$ $e) \sqrt[6]{\frac{64}{729}} \qquad f) \sqrt[4]{-16}$ **SOLUTION** a) $\sqrt[4]{16} = 16^{1/4} = 2$ b) $-\sqrt[4]{16} = -16^{1/4} = -2$ c) $\sqrt[5]{-32} = (-32)^{1/5} = -2$ d) $\sqrt[3]{1000} = (1000)^{\frac{1}{3}} = 10$ e) $\frac{64}{729} = (\frac{64}{729})^{\frac{1}{6}} = \frac{2}{3}$ f) $\sqrt[4]{-16} = (-16)^{1/4}$ is not a real number.

<u>Homework 5</u>: Converting from Rational Exponents to Radicals

Write in radical form and simplify. Assume all variable expressions represent positive real numbers.

a)
$$8^{\frac{2}{3}}$$
 b) $(-32)^{\frac{4}{5}}$ c) $-16^{\frac{3}{4}}$ d) $x^{\frac{5}{4}}$
e) $3x^{\frac{2}{3}}$ f) $2p^{\frac{1}{2}}$ g) $(3a+b)^{\frac{1}{4}}$
SOLUTION

a) $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$ or $8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4$ b) $(-32)^{\frac{4}{5}} = \sqrt[5]{(-32)^4} = \sqrt[5]{1048576} = 16$ or $(-32)^{\frac{4}{5}} = (\sqrt[5]{-32})^4 = (-2)^4 = 16$

c)
$$-16^{\frac{3}{4}} = -(\sqrt[4]{16})^3 = -2^3 = -8$$

d)
$$x^{\frac{5}{6}} = \sqrt[6]{x^5}$$

$$e) \ 3x^{\frac{2}{3}} = 3\sqrt[3]{x^2}$$

$$f) \ 2p^{\frac{1}{2}} = 2\sqrt{p}$$

g)
$$(3a+b)^{\frac{1}{4}} = \sqrt[4]{(3a+b)}$$

CAUTION

It is not possible to distribute exponents over a sum, so in Homework 5(g), $(3a + b)^{\frac{1}{4}} \neq (3a)^{\frac{1}{4}} + b^{\frac{1}{4}}$

$$\sqrt[n]{x^n+y^n} \neq x+y$$

Example 6: Converting from Radicals to Rational Exponents

Write in exponential form. Assume all variable expressions represent positive real numbers.

a)
$$\sqrt[4]{x^5}$$
 b) $\sqrt{3y}$ c) $10(\sqrt[5]{z})^2$ d) $5\sqrt[3]{(2x^4)^7}$
e) $\sqrt{p^2 + q}$
SOLUTION
a) $\sqrt[4]{x^5} = x^{\frac{5}{4}}$ b) $\sqrt{3y} = (3y)^{\frac{1}{2}}$
c) $10(\sqrt[5]{z})^2 = 10z^{\frac{2}{5}}$ d) $5\sqrt[3]{(2x^4)^7} = 5(2x^4)^{\frac{7}{3}} = 5 \cdot 2^{\frac{7}{3}}x^{\frac{28}{3}}$
e) $\sqrt{p^2 + q} = (p^2 + q)^{\frac{1}{2}}$

Evaluating $\sqrt[n]{a^n}$

suppose that *a* is a real number, If *n* is an even positive integer, then $\sqrt[n]{a^n} = |a|$

- Example: $\sqrt{(-9)^2} = |-9| = 9$, $\sqrt{13^2} = |13| = 13$
- suppose that *a* is a real number, If *n* is an odd positive integer, then $\sqrt[n]{a^n} = a$
- Example: $\sqrt[5]{2^5} = 2$, $\sqrt[3]{(-8)^3} = -8$

Homework 6. Using Absolute Value to simplify Roots

- Simplify each expression.
- a) $\sqrt{p^4}$

c) $\sqrt{16m^8r^6}$

 $e)\sqrt[5]{m^5}$

$$b)\sqrt[4]{p^4}$$

$$d) \sqrt[6]{(-2)^6}$$

$$f) \sqrt{(2k+3)^2}$$

$$g)\sqrt{x^2-4x+4}$$

Suppose that a and b represent real numbers, and m and n represent positive integers for which the indicated roots are real numbers.

<u>Rule</u>

 $\frac{Product\ rule}{\sqrt[n]{a} \cdot \sqrt[n]{b}} = \sqrt[n]{ab}$

<u>Quotient rule</u>

 $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$, $(b \neq 0)$

 $\frac{Power \, rule}{\sqrt[m]{\sqrt{a}} = \sqrt[mn]{a}}$

Example 7. Simplifying Radical Expressions

Simplify. Assume all variable expression represent positive real numbers.

a)
$$\sqrt{6} \cdot \sqrt{54}$$

b) $\sqrt[3]{m} \cdot \sqrt[3]{m^2}$
c) $\sqrt{\frac{7}{64}}$
d) $\sqrt[4]{\frac{a}{b^4}}$
e) $\sqrt[7]{\sqrt[3]{2}}$
f) $\sqrt[4]{\sqrt{3}}$

Simplified Radicals

Simplified Radicals:

- An expression with radicals is simplified when all
- of the following conditions are satisfied.
- 1. The radicand has no factor raised to a power greater than or equal to the index. الإسس داخل الجذر تكون اقل من الدليل
- 2. The radicand has no fractions لا توجد كسور داخل الجذر
- 3. No denominator contain a radical لا يوجد جذر في المقام
- 4. Exponents in the radicand and the index of the radical have greatest common factor 1، العامل المشترك بين الاس والدليل ١
- 5. All indicated operations have been performed (if possible) كل العمليات الحسابية المطلوبة تنفذ اذا امكن ذلك

Homework 7.

Simplify each radical. a) $\sqrt{175}$

 $b) - 3\sqrt[5]{32}$

c) $\sqrt[3]{81x^5y^7z^6}$

Operations on Radicals

Radicals with the same radicand and the same index, such as $3\sqrt[4]{11pq}$ and $-7\sqrt[4]{11pq}$, are <u>like radicals</u>,

On the other hand, examples of <u>unlike radicals</u> are as follows: $2\sqrt{5}$, and $2\sqrt{3}$ radicands are different $2\sqrt{3}$ and $2\sqrt[3]{3}$ indexes are different.

We add or subtract like radicals by using distributed property. Only like radicals can be combined. Sometimes we need to simplify radicals before adding or subtracting.

Example 8. Adding and Subtracting Radical

- Add or subtract, as indicated. Assume all variable expression represent positive real numbers.
- a) $3\sqrt[4]{11pq} + (-7\sqrt[4]{11pq})$
- b) $\sqrt{98x^3y} + 3x\sqrt{32xy}$

c)
$$\sqrt[3]{64m^4n^5} - \sqrt[3]{-27m^{10}n^{14}}$$

Homework 8. Simplifying Radicals

Simplify each radicals. Assume all variables represent positive real numbers.

a) $\sqrt[6]{3^2}$

b) $\sqrt[6]{x^{12}y^3}$

$$c)\sqrt[9]{\sqrt{6^3}}$$

Example 9. Multiplying Radical Expressions Find each product a) $(\sqrt{7} - \sqrt{10})(\sqrt{7} + \sqrt{10})$

 $b)(\sqrt{2}+3)(\sqrt{8}-5)$

Rationalizing Denominators

The third condition for a simplified radical requires that no denominator contain a radical.

We achieve this by rationalizing the denominator- that is, multiplying by a form of 1.

Rationalizing Denominators

Homework 9: Rationalizing Denominators

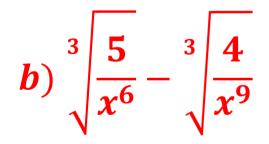
Rationalize each denominator

a)
$$\frac{4}{\sqrt{3}}$$
 b) $\sqrt[4]{\frac{3}{5}}$

Rationalizing Denominators

Example 10: Simplifying Radicals Expressions with Fractions Simplify each Expression. Assume all variables represent positive real numbers

$$a) \frac{\sqrt[4]{xy^3}}{\sqrt[4]{x^3y^2}}$$



Rationalizing a Binomial Denominators

Homework 10: Rationalizing a Binomial Denominator

Rationalize the denominator of $\frac{1}{1-\sqrt{2}}$