## • 2.1

- Basic Terminology of Equations
- Solving Linear Equations
- Identities, Conditional Equations, and Contradictions
- Solving for a Specified Variable (Literal Equations)

## **Basic Terminology of Equations**

An equation is a statement that two expressions are equal.

$$x + 2 = 9$$
  $11x = 5x + 6x$   $x^2 - 2x - 1 = 0$ 

To solve an equation means to find all numbers that make the equation a true statement. These numbers are the **solutions**, or **roots**, of the equation. A number that is a solution of an equation is said to *satisfy* the equation, and the solutions of an equation make up its **solution set**. Equations with the same solution set are **equivalent equations**. **Addition and Multiplication Properties of Equality** 

Let *a*, *b*, and *c* represent real numbers.

That is, the same number may be added to each side of an equation without changing the solution set.

#### **Addition and Multiplication Properties of Equality**

Let *a*, *b*, and *c* represent real numbers.

If 
$$a = b$$
 and  $c \neq 0$ , then  $ac = bc$ .

That is, each side of an equation may be multiplied by the same nonzero number without changing the solution set.

## Linear Equation in One Variable

A linear equation in one variable is an equation that can be written in the form

$$ax + b = 0$$
,

where *a* and *b* are real numbers with  $a \neq 0$ .

A linear equation is also called a **first-degree equation** since the greatest degree of the variable is 1.

Linear equations

$$3x + \sqrt{2} = 0$$
  $\frac{3}{4}x = 12$   $0.5(x+3) = 2x - 6$ 

Nonlinear equations

$$\sqrt{x}+2=5$$
  $\frac{1}{x}=-8$   $x^2+3x+0.2=0$ 

#### Example 1

**SOLVING A LINEAR EQUATION** 

Solve **Solution** 

Solve 
$$3(2x-4) = 7 - (x+5)$$
.  
Solution  $3(2x-4) = 7 - (x+5)$   
 $6x-12 = 7 - x - 5$  Distributive property  
 $6x-12 = 2 - x$  Combine like terms.  
 $6x-12 + x = 2 - x + x$  Add x to each side.  
 $7x-12 = 2$  Combine like terms.  
 $7x-12 + 12 = 2 + 12$  Add 12 to each side.  
 $7x = 14$   
Divide each side by 7.  $\frac{7x}{7} = \frac{14}{7}$ ,  $x = 2$ 

#### **Example 2** SOLVING A LINEAR EQUATION WITH FRACTIONS

Solve

$$\frac{2x+4}{3} + \frac{1}{2}x = \frac{1}{4}x - \frac{7}{3}.$$

#### Identities, Conditional Equations, and Contradictions

An equation satisfied by every number that is a meaningful replacement for the variable is an **identity**.

$$3(x+1) = 3x+3$$

An equation that is satisfied by some numbers but not others is a **conditional equation**.

2x = 4

An equation that has no solution is a **contradiction**.

x = x + 1

#### Example 3 IDENTIFYING TYPES OF EQUATIONS

Determine whether each equation is an *identity*, a *conditional equation*, or a *contradiction*.

(a) 
$$-2(x+4)+3x=x-8$$

#### Example 3 IDENTIFYING TYPES OF EQUATIONS

Determine whether each equation is an *identity*, a *conditional equation*, or a *contradiction*.

(b) 5x-4=11

#### Example 3 IDENTIFYING TYPES OF EQUATIONS

Determine whether each equation is an *identity*, a *conditional equation*, or a *contradiction*.

(c) 3(3x-1) = 9x+7

### Identifying Types of Linear Equations

1-If solving a linear equation leads to a true statement such as 0 = 0, the equation is an identity. Its solution set is {all real numbers}.
2-If solving a linear equation leads to a single solution such as x = 3, the equation is conditional. Its solution set consists of a single element.
3-If solving a linear equation leads to a false statement such as -3 = 7, then the equation is a contradiction. Its solution set is Φ.

## Solving for a Specified Variable (Literal Equations)

A formula is an example of a **linear equation** (an equation involving letters). This is the formula for **simple interest**.



# Solving for a Specified Variable (Literal Equations)

This formula gives the **future value**, or **maturity value**, *A* of *P* dollars invested for *t* years at an annual simple interest rate *r*.



#### SOLVING FOR A SPECIFIED VARIABLE

- (a) Solve for  $t_{l} = Prt$
- (b) Solve for *P*. A P = Prt
- (c) Solve for *x*. 3(2x-5a)+4b=4x-2