2.2- Complex Numbers

- Basic Concepts of Complex Numbers
- Operations on Complex Numbers

Basic Concepts of Complex Numbers

$$x^{2} = -1$$

1- since no real number, when squared, gives -1.

To extend the real number system to include solutions of equations of this type, the number *i* is defined to have the following property.

$$i = \sqrt{-1}$$
, and therefore, $i^2 = -1$.

2- If a and b are real numbers, then any number of the form a + bi is a complex number.

3- In the complex number a + bi, a is the real part and b is the imaginary part.

4-Two complex numbers a + bi and c + di are equal provided that their real parts are equal and their imaginary parts are equal; that is

a + bi = c + di if and only if a = c and b = d.

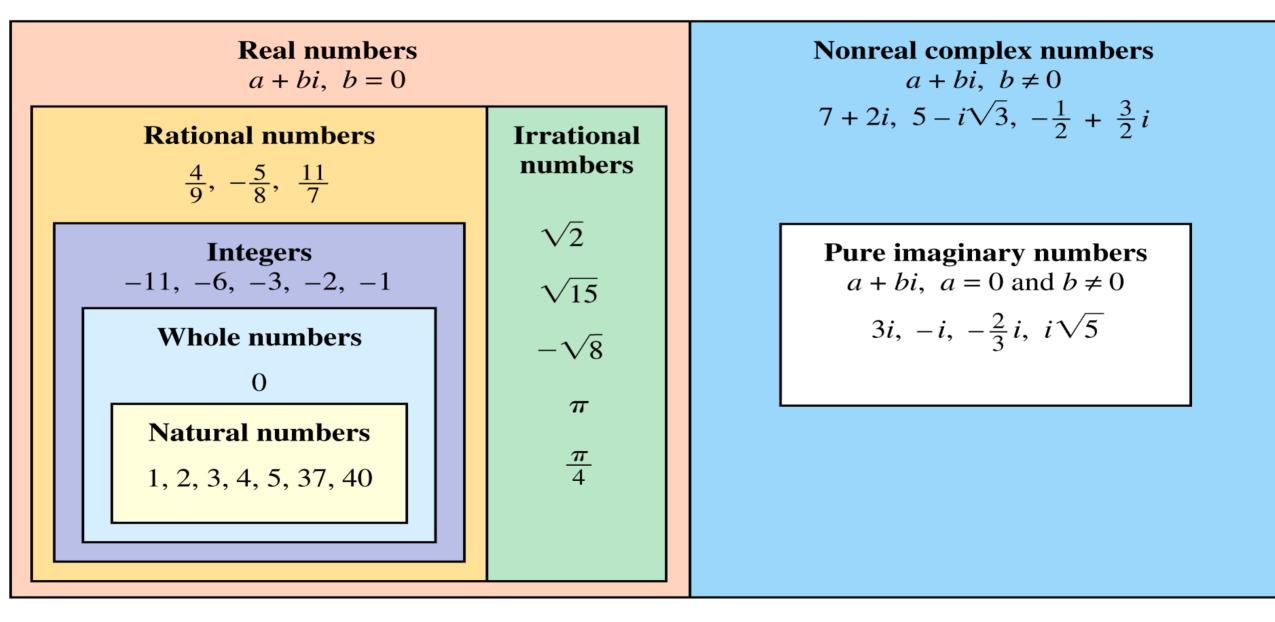
5- For complex number a + bi, if b = 0, then a + bi = a. Thus, the set of real numbers is a subset of the set of complex numbers.

6- If a = 0 and $b \neq 0$, the complex number is said to be a **pure imaginary number**.

7-A pure imaginary number, or a number like 7 + 2i with $a \neq 0$ and $b \neq 0$, is a **nonreal complex number**.

8-- A complex number written in the form a + bi (or a + ib) is in **standard form.**

Complex Numbers *a* + *bi*, for *a* and *b* Real



THE EXPRESSION $\sqrt{-a}$

If
$$a > 0$$
, then $\sqrt{-a} = i\sqrt{a}$.

Write as the product of a real number and *i*, using the definition of $\sqrt{-a}$.

(a)
$$\sqrt{-16}$$

(b)
$$\sqrt{-70}$$

(c)
$$\sqrt{-48}$$

Simplify using real numbers and *i*.

 $\sqrt{-9}$

A. ±3

B–*i*√3

C. –3*i*

D. 3*i*

Simplify using real numbers and *i*.

 $\sqrt{-49}$

A. –7*i*

B. 7*i*

C. ±7

D. $\sqrt{7}$

Simplify using real numbers and *i*.

 $2\sqrt{-72}$

- A. $2\sqrt{2}$ B. $-12\sqrt{2}$
- C. $12i\sqrt{2}$
- D. $6i\sqrt{8}$

Operations on Complex Numbers

Products or quotients of Complex Numbers

Products or quotients with negative radicands are simplified by first rewriting for a positive number *a*.

$$\sqrt{-a}$$
 as $i\sqrt{a}$

Then the properties of real numbers and the fact that are applied

$$i^2 = -1$$

Caution When working with negative radicands, use the definition

$$\sqrt{-a} = i\sqrt{a}$$

before using any of the other rules for radicals.

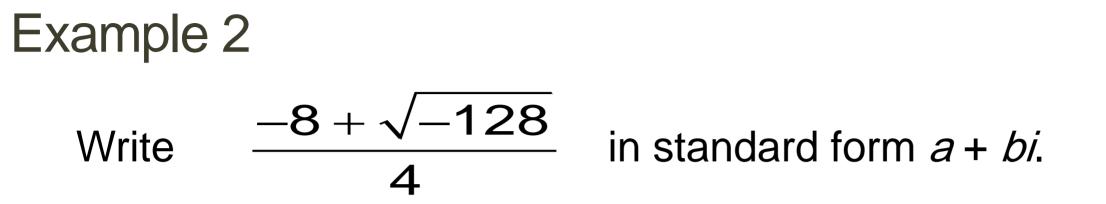
•FINDING PRODUCTS AND QUOTIENTS INVOLVING $\sqrt{-a}$

Homework 1 Multiply or divide, as indicated. Simplify each answer.

(a)
$$\sqrt{-7} \times \sqrt{-7}$$

(b) $\sqrt{-6} \times \sqrt{-10}$
(c) $\frac{\sqrt{-20}}{\sqrt{-2}}$
(d) $\frac{\sqrt{-48}}{\sqrt{-48}}$

 $\sqrt{24}$



Addition and Subtraction of Complex Numbers

For complex numbers
$$a + bi$$
 and $c + di$,
 $(a + bi) + (c + di) = (a + c) + (b + d)i$
and $(a + bi) - (c + di) = (a - c) + (b - d)i$.

Homework 2 Find each sum or difference.

(a)
$$(3-4i)+(-2+6i)$$

(b)
$$(-4+3i)-(6-7i)$$

Multiplication of Complex Numbers

The product of two complex numbers is found by multiplying as though the numbers were binomials and using the fact that $i^2 = -1$, as follows.

For complex numbers a + bi and c + di,

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i.$$

Example 3 Find each product.

(a)
$$(2-3i)(3+4i)$$

(b) $(4+3i)^2$

(c) (6+5i)(6-5i)

Property of Complex Conjugates

For real numbers *a* and *b*,

$$(a+bi)(a-bi) = a^2 + b^2.$$

DIVIDING COMPLEX NUMBERS

Homework 3

Write each quotient in standard form a + bi.

Powers of *i*

$$i^1 = i$$
 $i^5 = i$

- $i^2 = -1$ $i^{6} = -1$ $i^{3} = -i$
 - $i^{7} = -i$
- *i*⁴ = 1 $i^8 = 1$ and so on.

Simplifying Powers of *i*

Powers of *i* can be simplified using the facts ·

$$i^2 = -1$$
 and $i^4 = (i^2)^2 = (-1)^2 = 1$

.

$$i^{n} \rightarrow \frac{n}{4} = \begin{cases} m(integer) \rightarrow i^{n} = 1\\ m.25 \rightarrow i^{n} = i\\ m.50 \rightarrow i^{n} = -1\\ m.57 \rightarrow i^{n} = -i \end{cases}$$

Simplifying Powers of *i*

Powers of *i* can be simplified using the facts .

$$i^2 = -1$$
 and $i^4 = (i^2)^2 = (-1)^2 = 1$.

$$i^{n} \rightarrow \frac{n}{4} = \begin{cases} m(integer)i^{4m} = 1\\ i^{4m+1} = i\\ i^{4m+2} = -1\\ i^{4m+3} = -i \end{cases}$$

Simplifying Powers of *i*

Powers of *i* can be simplified using the facts .

$$i^2 = -1$$
 and $i^4 = (i^2)^2 = (-1)^2 = 1$.

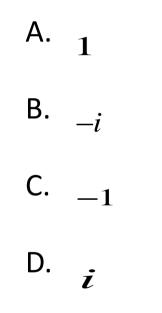
$$i^{-n} \to \frac{n}{4} = \begin{cases} m(integer) \to i^{-n} = 1\\ m.25 \to i^{-n} = -i\\ m.50 \to i^{-n} = -1\\ m.57 \to i^{-n} = i \end{cases}$$

Example 4

Simplify each power of *i*.

(a) i^{15} (b) i^{-3}

Simplify and write in the standard form of a complex number i^{16}



Simplify and write in the standard form of a complex number i^{21}

A. 1

B. –*i*

C. −1

D. *i*

Simplify and write in the standard form of a complex number i^{42}

A. 1
B. −*i*C. −1

D. *i*

Simplify and write in the standard form of a complex number

 $\frac{2}{5-3i}$

A. $\frac{5}{8} - \frac{3}{8}i$ B. $\frac{5}{8} + \frac{3}{8}i$ C. $\frac{5}{17} + \frac{3}{17}i$ D. $\frac{5}{17} - \frac{3}{17}i$