## Chapter (3): VECTORS

Choose the correct answer:

**1.** A vector has two components (  $\mathbf{A_x} = \mathbf{3}$  cm and  $\mathbf{A_y} = \mathbf{-4}$  cm ). What is the magnitude of  $\vec{A}$ ?

(a) 4 cm

(b) 5 cm

(c) 1 cm

(d) 7 cm

**2.** In question **2**, What is the direction of  $\vec{A}$ ?

(a) -53.1°

(b) -25.3°

(c) -17.9°

(d) -36.9°

**3.** Given the two vectors  $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$  and  $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ , Find  $\vec{c}$  where  $\vec{c} = \vec{a} + \vec{b}$ ?

(a)  $\vec{c} = 3\hat{i} + 5\hat{j} + 7\hat{k}$  (b)  $\vec{c} = 3\hat{i} + \hat{j} + 7\hat{k}$  (c)  $\vec{c} = \hat{i} + \hat{j} + 7\hat{k}$  (d)  $\vec{c} = \hat{i} + 5\hat{j} + \hat{k}$ 

**4.** In question 3, Find  $\vec{a} \cdot \vec{b}$  ?

(a) 5

(b) 15

(c) 20

(d) 8

**5.** Vectors  $\vec{C}$  and  $\vec{D}$  have magnitudes of **3 units** and **4 units** respectively. What is the **angle** between the directions of  $\vec{C}$  and  $\vec{D}$  if  $\vec{C} \times \vec{D} = 12$ 

(a) 90°

(b) 180°

(c) 270°

 $(d) 0^{\circ}$ 

**6.** A vectors  $\vec{a}$  has two component,  $a_x = 2.6$  m,  $a_y = -2.3$  m, what is the **direction** of  $\vec{a}$ ?

 $(a) - 48.5^{\circ}$ 

(b) 48.5°

(c)  $-41.3^{\circ}$ 

(d) 41.3°

**7.** In the figure **what are the signs** of the **x and y** component of  $\vec{r}_1 + \vec{r}_2$ ?



(b) ( - , - ) (c) ( + , - )

(d)(-,+)



**8.** If  $\vec{a} \times \vec{b} = \vec{c}$  then **the value of**  $c_v$  equals:

(a)  $a_z b_x - b_z a_x$ 

(b)  $a_x b_v - b_x a_v$  (c)  $a_v b_z - b_v a_z$ 

(d)  $a_v b_x - b_v a_x$ 

**9.** Two vectors  $\vec{a}$  and  $\vec{b}$ ,  $\vec{a}$  has a magnitude of **12 m** and has an **angle of 40°** from the +x direction, and  $\vec{b}$  has a magnitude of **9 m** in the **direction shown**. Find the x component of their vector sum?



(a) 17.65 m

(b) 10.79 m

(c) 0.73 m

(d) 3.21 m

Two vectors  $\vec{a} = (4m)\hat{i} - (3m)\hat{j}$  and  $\vec{b} = (6m)\hat{i} + (8m)\hat{j}$ , What is **the magnitude** of  $\vec{a}$ ? 10.

(a) 1 m

(b) 4 m

(c) 5 m

(d) 7 m

In **question 10**, find  $\vec{a} + \vec{b}$  ? 11.

(a)  $10 \hat{i} + 5 \hat{j}$ 

(b)  $2\hat{i} + 11\hat{j}$ 

(c)  $10 \hat{i} + 11 \hat{j}$ 

(d)  $9\hat{i} + 12\hat{j}$ 

In **question 10**, Find  $\vec{a} \cdot \vec{b}$  ? 12.

(a) 1

(b) 24

(c) 48

(d) zero

In **question 10,** Find  $\frac{b}{2}$ ?

(a)  $3\hat{i} + 4\hat{j}$ 

(b)  $-3\hat{i} - 4\hat{j}$ 

(c)  $12 \hat{i} + 16 \hat{j}$  (d)  $-12 \hat{i} - 16 \hat{j}$ 

Given the two vectors  $\vec{a}=2\hat{i}+3\hat{j}+4\hat{k}$  and  $\vec{b}=\hat{i}-2\hat{j}+3\hat{k}$ , Find  $\vec{c}$  where  $\vec{c}=\vec{a}+\vec{b}$  ?

(a)  $\vec{c} = 3\hat{i} + 5\hat{j} + 7\hat{k}$  (b)  $\vec{c} = 3\hat{i} + \hat{j} + 7\hat{k}$  (c)  $\vec{c} = \hat{i} + \hat{j} + 7\hat{k}$  (d)  $\vec{c} = \hat{i} + 5\hat{j} + \hat{k}$ 

Vector  $\vec{A}$  has a **magnitude of 6 units** and is in the **direction of positive x-axis**, vector  $\vec{B}$  has a magnitude of 4 units and making an angle of 30° with the positive x-axis. What is the **magnitude of**  $\vec{A} \times \vec{B}$  ?

(a) 12 units

(b) 24 units

(c) 20.8 units

(d) 28 units

In the figure, what is the signs of the x and y components of vector  $\vec{d}$ ? **16**.



(a) ( + , + )

(b) ( + , - )

(c) ( - , - )

(d)(-,+)

Two vectors :  $\vec{A} = 2\hat{i} + 3\vec{j} + 4\hat{k}$  and  $\vec{B} = \hat{i} - 2\hat{j} + 3\hat{k}$ . Find  $\vec{A} \cdot \vec{B}$ ?

(a) 5

(b) 15

(c) 20

(d) 8

**Which figure** of the following represent the relation  $\vec{s} = \vec{a} + \vec{b}$ : 18.







- (a) 13 m
- (b) 7.5 m
- (c)  $8.7 \, \text{m}$
- (d) 7.8 m



Which one of the following is the **scalar quantity**?

- (a) Displacement
- (b) Length
- (c) Velocity
- (d) acceleration

y

Vector  $\vec{A}$  has two components,  $\mathbf{A}_{x} = -25 \,\mathrm{m}$ ,  $\mathbf{A}_{y} = 40 \,\mathrm{m}$ , what is the direction of  $\vec{A}$ ? 21.

- (a) 32°
- (b) -32°
- $(c) 58^{\circ}$
- (d)  $-58^{\circ}$

If the x component of vector  $\vec{r}$  is 2.6 m and the y component is -2.3 m then  $\vec{r}$  in unitvector notation is:

- (a)  $2.6 \hat{i} 2.3 \hat{j}$

- (b)  $-2.3 \hat{i} + 2.6 \hat{j}$  (c)  $2.6 \hat{i} (-2.3) \hat{j}$  (d)  $2.6 \hat{i} 2.3 \hat{j} + \hat{k}$

Vector  $\vec{c}$  has the **magnitude of 36**, what is the magnitude of  $\frac{\vec{c}}{4} - 9$  ? 23.

- (a) zero
- (b) 6

(c) 9

Which one of the following figures shows the three vectors  $\vec{a}$  ,  $\vec{b}$  and  $-\vec{b}$  :



Two vectors are given by:  $\vec{a} = 4\hat{i} - 3\hat{j} + \hat{k}$  and  $\vec{b} = 6\hat{i} + 8\hat{j} + 4\hat{k}$ 

Find  $\vec{c}$  where  $\vec{a} - \vec{b} + \vec{c} = 0$ 

- (a)  $4\hat{i} 3\hat{i} + \hat{k}$

- (b)  $2\hat{i} + 11\hat{j} + 3\hat{k}$  (c)  $-2\hat{i} 5\hat{j} + \hat{k}$  (d)  $\hat{i} + 3\hat{j} + 11\hat{k}$

If the angle between  $\vec{A}$  and  $\vec{B}$  is 60°, and A = 5 units, B = 6 units, then the 26. magnitude of the vector product  $\vec{A} \times \vec{B}$  is:

- (a) 30
- (b) 20.89
- (c) 15

For the following two vectors:  $\vec{A} = 2\hat{i} + 3\hat{j} - 4\hat{k}$ ,  $\vec{B} = -3\hat{i} + 4\hat{j} + 2\hat{k}$ . Find  $\vec{A} \cdot \vec{B}$ 27.

- (a) 4
- (b) 2

28. In question 27, the **magnitude** of vector A equals:

- (a) 5.4
- (b) 3

- © 1.7
- (d) 4.2

If  $\vec{a} \times \vec{b} = \vec{c}$  then **the value of**  $c_x$  equals:

- (a)  $a_z b_x b_z a_x$
- (b)  $a_x b_y b_x a_y$
- (c)  $a_v b_z a_z b_v$
- (d)  $a_v b_x b_v a_x$

**30.** Which **vector** of the following has the **y-component equals zero**:



- **31.** Vectors  $\vec{C}$  and  $\vec{D}$  have magnitudes of **3 units** and **4 units** respectively. What is the **angle** between the directions of  $\vec{C}$  and  $\vec{D}$  if  $\vec{C} \cdot \vec{D} = 12$  units?
- (a) 90°
- (b) 180°
- © 270°
- (d) 0°
- **32.** Two vectors  $\vec{a}$  and  $\vec{b}$  shown in the figure, if  $\vec{r} = \vec{a} + \vec{b}$  then :



- (a)  $r_x = a \cos 40 + b \cos 20$
- (b)  $r_x = a \cos 40 + b \cos 160$
- (c)  $r_x = a \sin 40 + b \sin 20$
- (d)  $r_x = a \sin 40 + b \sin 160$
- **33.** If  $\vec{A} = 3\hat{i} 3\hat{j}$  and  $\vec{B} = \hat{i} 2\hat{j}$ , then  $\vec{A} 2\vec{B} = \hat{i} 2\hat{j}$
- (a)  $\hat{i} + \hat{j}$
- (b)  $2\hat{i} \hat{j}$
- (c)  $5\hat{i} 7\hat{j}$
- (d)  $4\hat{i} 5\hat{j}$

- **34.** The vector  $\vec{B}$  in the diagram is equal to:
- (a)  $\vec{B} = \vec{A} \vec{C}$
- (b)  $\vec{B} = \vec{A} + \vec{C}$
- (c)  $\vec{B} = \vec{C} \vec{A}$
- (d)  $\vec{B} = -\vec{A} \vec{C}$



- **35.** In the diagram, the magnitude of  $\vec{A} = 12$  m and the magnitude of  $\vec{B} = 8$  m. The x component of  $\vec{A} + \vec{B} =$
- (a) 14 m
- (b) 10 m
- (c) 6 m
- (d) 18.4 m
- them is **30°**. The value of
- **36.** Vectors  $\vec{A}$  and  $\vec{B}$  each has **magnitude 4** and the angle between them is **30°**. The value of  $\vec{A} \cdot \vec{B} =$
- (a) 3.46
- (b) 13.86
- (c) 16
- (d) 8
- **37.** Let  $\vec{C} = \vec{A} \times \vec{B}$  and  $\phi$  is the angle between  $\vec{A}$  and  $\vec{B}$ , which of the following is **true**?
- (a) The magnitude of  $\vec{C} = AB \cos \phi$
- (c)  $-\vec{C} = \vec{B} \times \vec{A}$

(b)  $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$ 

(d) The angle between  $\vec{C}$  and  $\vec{A} = 0^{\circ}$ 



- If vector  $\vec{A} = 6\hat{i} 8\hat{j}$  then  $4\vec{A}$  has a **magnitude**: 39.
- (a) 10
- (b) 20
- (c) 30
- (d) 40
- A vector  $\vec{a}$  has a **magnitude of 25 m** and an  $\mathbf{a_x} = 12 \, \mathbf{m}$ . The **angle** it makes with the 40. positive x axis is:
- $(a) 26^{\circ}$
- (b) 29°
- (c) 61°
- (d) 64°
- Let  $\vec{A}=2\hat{i}+6\hat{j}-3\hat{k}$  and  $\vec{B}=4\hat{i}+2\hat{j}+\hat{k}$  . The vector sum  $\vec{S}=\vec{A}+\vec{B}$  is: 41.
- (a)  $6\hat{i} + 8\hat{j} 2\hat{k}$
- (b)  $-2\hat{i} + 4\hat{j} 4\hat{k}$  (c)  $2\hat{i} 4\hat{j} + 4\hat{k}$  (d)  $8\hat{i} + 12\hat{j} 3\hat{k}$
- Let  $\vec{A} = 2\hat{i} + 6\hat{j} 3\hat{k}$  and  $\vec{B} = 4\hat{i} + 2\hat{j} + \hat{k}$ . Then  $\vec{A} \cdot \vec{B} =$ 42.
- (a)  $8\hat{i} + 12\hat{j} 3\hat{k}$
- (b)  $12\hat{i} 14\hat{i} 20\hat{k}$
- (c) 23
- (d) 17
- 43. Vectors  $\vec{A}$  and  $\vec{B}$  each have **magnitude L**. When the angle between them is **60°**. The **magnitude** of  $\vec{A} \times \vec{B}$  is:
- (a)  $0.5 L^2$
- (b) L<sup>2</sup>
- (c)  $0.866 L^2$
- (d)  $2 L^2$
- 44. Which **vector** of the following has the **x-component equals zero**:









- The **angle between**  $\vec{A} = -25\hat{i} + 45\hat{j}$  and the x axis is 45.
- (a)  $-29^{\circ}$
- (b) 29°
- (c)  $-60.9^{\circ}$
- (d) 60.9°
- Let  $\vec{V} = 2\hat{i} + 6\hat{j} 3\hat{k}$ . The **magnitude of**  $\vec{V}$  is 46.
- (a) 5
- (b) 5.57
- (c) 7
- (d) 7.42
- from the figure, **the v component** of the vector  $\vec{r}$  equals: 47.



- (a) 13 m
- (b) 7.5 m
- (c) 8.7 m
- (d) 7.8 m

y

In the figure, what is the signs of the x and y components 48. Of the vector  $\vec{d}$ :



- (a) (+, +)
- (b) ( , )
- (c) (+, -)
- (d)(-,+)
- Two vectors are given by:  $\vec{a} = 4\hat{i} 3\hat{j} + \hat{k}$  and  $\vec{b} = 6\hat{i} + 8\hat{j} + 4\hat{k}$ 49.

Find  $\vec{c}$  where  $\vec{a} - \vec{b} + \vec{c} = 0$ 

- (a)  $4\hat{i} 3\hat{i} + \hat{k}$
- (b)  $2\hat{i} + 11\hat{j} + 3\hat{k}$  (c)  $-2\hat{i} 5\hat{j} + \hat{k}$  (d)  $\hat{i} + 3\hat{j} + 11\hat{k}$
- For the following two vectors:  $\vec{A} = 2\hat{i} + 3\hat{j} 4\hat{k}$ ,  $\vec{B} = -3\hat{i} + 4\hat{j} + 2\hat{k}$ **50.**

Find  $A \cdot B$ 

- (a) 4
- (b) 2
- (c) 8
- (d) 10
- **51.** Vector  $\vec{a}$  has three components,  $\mathbf{a_x} = \mathbf{10}$  m,  $\mathbf{a_v} = \mathbf{10}$  m, and  $\mathbf{a_z} = \mathbf{5}$  m. Its magnitude is:
- (a) 225 m
- (b) 25 m
- (c) 20 m
- (d) 15 m
- If  $\vec{A} = 2\hat{i} + 6\hat{j} 3\hat{k}$  and  $\vec{B} = 4\hat{i} + 2\hat{j} + \hat{k}$ . Then  $\vec{A} \vec{B} =$ **52.**
- (a)  $6\hat{i} + 8\hat{j} 2\hat{k}$
- (b)  $-2\hat{i} + 4\hat{j} 4\hat{k}$  (c)  $2\hat{i} 4\hat{j} + 4\hat{k}$  (d)  $8\hat{i} + 12\hat{j} 3\hat{k}$
- Vectors  $\vec{C}$  and  $\vec{D}$  have magnitudes of **3 units** and **4 units** respectively. What is the **angle** between the directions of  $\vec{C}$  and  $\vec{D}$  if  $\vec{C} \cdot \vec{D}$  = 12 units?
- $(a) 90^{\circ}$
- (b) 180°
- (c) 270°
- $(d) 0^{\circ}$
- The vector  $-\vec{b}$  has the same **magnitude** as the vector  $\vec{b}$  but 54.
- (a) perpendicular to  $\vec{b}$
- (c) the opposite direction of  $\vec{b}$
- (b) paralell to  $\vec{b}$
- (d) the same direction of  $\vec{b}$
- In which figure of the following  $b_x = 8.7 \text{ m}$ ? (b = 10 m) **55.**









- The components of  $\vec{a}$  are:  $\mathbf{a_x} = \mathbf{3} \, \mathbf{m}$ , and  $\mathbf{a_y} = \mathbf{4} \, \mathbf{m}$ , the **direction** of  $\vec{a}$  is: **56.**
- (a) 66.8°
- (b) 63.4°
- (c) 59°
- (d) 53.13°

- **In question 59**, the magnitude of  $\vec{a}$  is: **57.**
- (a) 6.71 m
- (b) 5.83 m
- (c) 7.62 m
- (d) 5 m
- In the figure, the signs of the x and y components Of the vector  $\vec{d}$  are:



- (a) (+, +)
- (b) ( , )
- (c) (+, -)
- (d)(-,+)

- The **vector product**  $\hat{j} \times \hat{k}$  is equal to: **59.**
- (a) 0

- (b) 1
- (c)  $\hat{i}$

(d)  $-\hat{i}$ 

- If  $\vec{a} = 4\hat{i} 3\hat{j}$  and  $\vec{b} = 6\hat{i} + 8\hat{j}$ , then  $\vec{b} \vec{a} =$ 60.
- (a)  $4\hat{i} 3\hat{i}$
- (b)  $2\hat{i} + 11\hat{j}$
- (c)  $-2\hat{i} 5\hat{j}$  (d)  $\hat{i} + 3\hat{j}$
- If A = 4 units, B = 6 units, and the angle  $\phi = 60^{\circ}$ , then the magnitude of the vector product  $\vec{A} \times \vec{B}$  is:
- (a) 31.2 units

- (b) 20.78 units (c) 15.6 units (d) 25.98 units
- For the following two vectors:  $\vec{A} = 2\hat{i} + 3\hat{j} 4\hat{k}$ ,  $\vec{B} = -3\hat{i} + 2\hat{j} + 2\hat{k}$ . **Find**  $\vec{A} \cdot \vec{B}$

- (a) 5
- (b) 2
- (c) 8
- (d) 11
- If C = 3 units, D = 4 units and  $\vec{C} \cdot \vec{D} = -12$  units then the angle between the directions of  $\vec{C}$  and  $\vec{D}$  is:
- (a)  $90^{\circ}$
- (b) 180°
- (c) 270°
- $(d) 0^{\circ}$

- If  $\vec{D} = 5\hat{i} + 25\hat{j}$ , then  $\frac{D}{5}$  equals:
- (a)  $5 \hat{i} + \hat{j}$
- (b)  $\hat{i} + 5 \hat{j}$
- (c)  $5\hat{i} \hat{j}$  (d)  $\hat{i} 5\hat{j}$
- Two vectors  $\vec{a}$  and  $\vec{b}$  shown in the figure, if  $\vec{r} = \vec{a} + \vec{b}$  then : 65.
- (a)  $r_x = a \cos 40 + b \cos 20$
- (b)  $r_x = a \cos 40 + b \cos 160$
- (c)  $r_x = a \sin 40 + b \sin 20$
- (d)  $r_x = a \sin 40 + b \sin 160$



Are the following statements (True ✓) or (False × )?

- 66. On an axis. مسقط المتحه
- (a) True
- (b) False

- **67.** The magnitude of  $\vec{A} \cdot \vec{B}$  is maximum when the angle between  $\vec{A}$  and  $\vec{B}$  is 90°.
- (a) True
- (b) False
- **68.** The value of  $\hat{i} \cdot (\hat{j} \times \hat{k})$  is zero.
- (a) True
- (b) False
- **69.**  $a_x$  and  $a_y$  are vector components of  $\vec{a}$ .
- (a) True
- (b) False
- **70.** The magnitude of the unit vector equals 1.
- (a) True
- (b) False