

INTRODUCTION TO CHEMISTRY

CHEM 101

Lecture Presentation

1st Semester
1439 – 1440 | 2018 – 2019

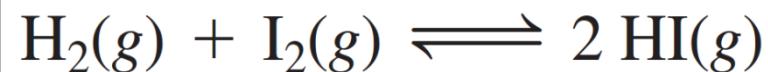
Taibah University
The Unified Scientific Track

ALWAYS LEARNING

P Pearson

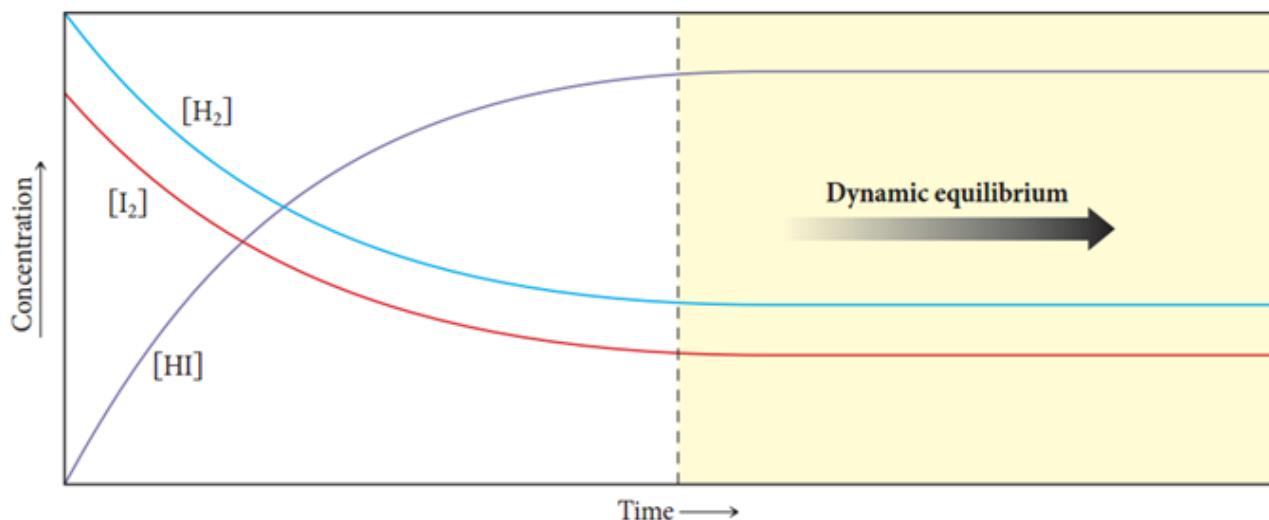
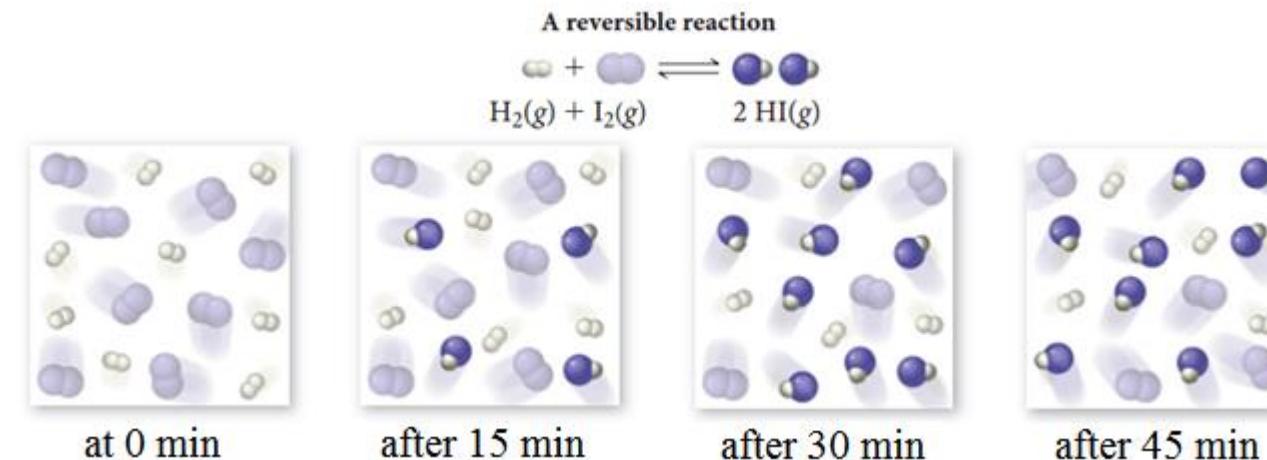
Chapter 5

Aqueous Solutions and Acids–Bases Equilibria


Topic 16

➤ Chemical Equilibrium

Chemical Equilibrium: An Introduction



Dynamic Equilibrium is the condition in which the rate of the forward reaction equals the rate of the reverse reaction:

$$\text{Rate}_{\text{forward}} = \text{Rate}_{\text{reverse}}$$

- ✓ As H_2 and I_2 react, their concentrations decrease, which in turn **decreases the rate of the forward reaction**.
- ✓ At the same time, the concentration of HI increases, **increasing the rate of the reverse reaction**.
- ✓ At a certain point, the rate of the reverse reaction, R_r (*which has been increasing*) **equals** the rate of the forward reaction, R_f (*which has been decreasing*). At that point, **dynamic equilibrium** is reached.

5.1 The Concept of Dynamic Equilibrium

As concentration of product increases, and concentrations of reactants decrease, rate of forward reaction slows down, and rate of reverse reaction speeds up.

Dynamic equilibrium: Rate of forward reaction = rate of reverse reaction. Concentrations of reactant(s) and product(s) no longer change.

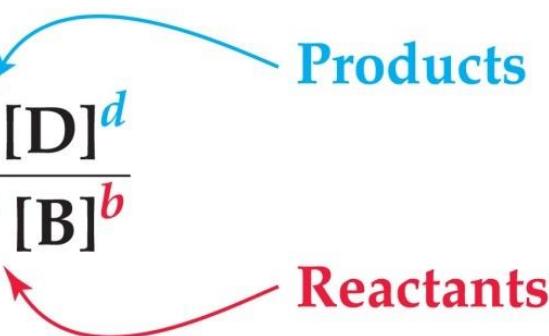
5.1 The Concept of Dynamic Equilibrium

Chemical Equilibrium \neq Equal Concentrations!

At equilibrium, the rates of the forward (R_f) and reverse (R_r) reactions are equal:

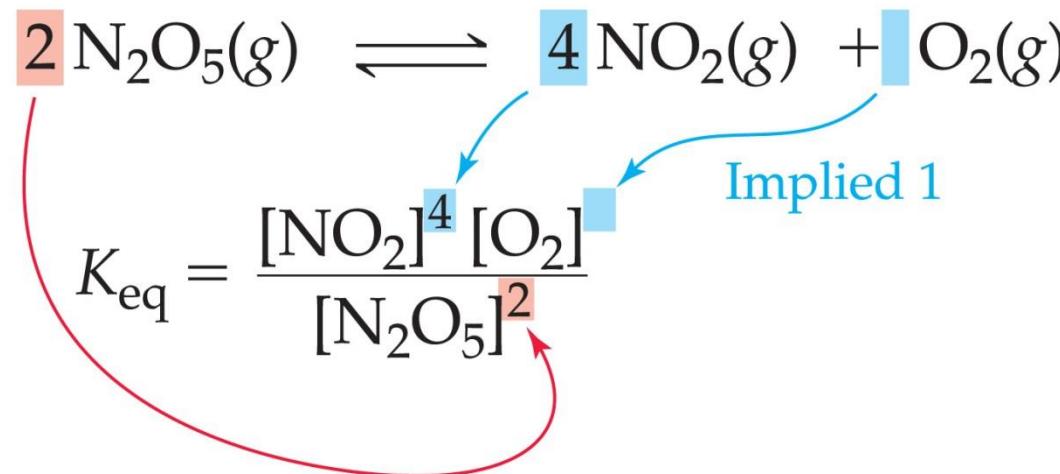
- ✓ $R_f = R_r$: **DOES NOT** mean that the concentrations of reactants and products are equal in value.

5.2 The Equilibrium Constant: K_c or K_{eq}


Chemical Equilibrium in reversible reactions can be numerically expressed by equilibrium constants (K_c or K_{eq}).

- Expressing K_c or K_{eq} :

Where A and B are **reactants**, C and D are **products**, and a , b , c , and d are the coefficients in the balanced chemical equation:


$$K_{eq} = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Note:

[A] = Molar concentration of “A”
[B] = Molar concentration of “B”
..... and so on!

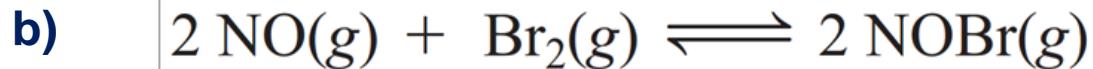
Example: write the equilibrium expression for the reaction:

Notice that the coefficients in the chemical equation become exponents in the equilibrium expression.

- ✓ For this reason, all equations **must be balanced** first!

Example: Express the equilibrium constant for the following chemical equation:

Answer:


$$K = \frac{[\text{CO}][\text{H}_2]^2}{[\text{CH}_3\text{OH}]}$$

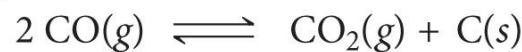
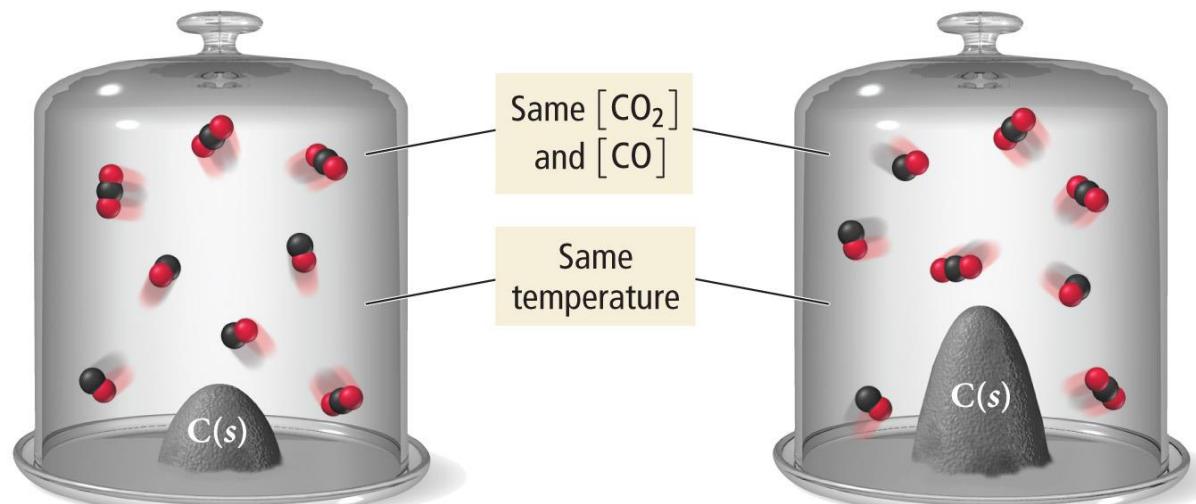
Expressing Equilibrium Constants (K_{eq}) for Chemical Reactions: Exercises

Write the equilibrium constant expression K_{eq} for the following balanced chemical equations:

Answer: $K_{eq} = \dots$

Answer: $K_{eq} = \dots$

Answer: $K_{eq} = \dots$



5.4 Heterogeneous Equilibria: Reactions Involving Solids or Liquids

- Many chemical reactions involve pure solids or pure liquids as reactants or products.

Consider the reaction:

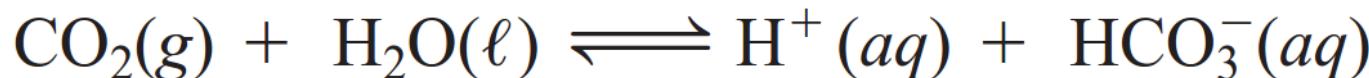
A Heterogeneous Equilibrium

5.4 Heterogeneous Equilibria: Reactions Involving Solids or Liquids

- For the previous reaction, we might expect the expression for the equilibrium constant to be:

$$K_c = \frac{[\text{CO}_2][\text{C}]}{[\text{CO}]^2} \quad (\text{incorrect})$$

The concentration of a solid does not change, because a solid does NOT expand to fill its container. A solid's concentration, therefore, depends only on its density, which is constant.


- The correct equilibrium expression is:

$$K_c = \frac{[\text{CO}_2]}{[\text{CO}]^2} \quad (\text{correct})$$

Similarly, the concentration of a pure liquid does not change. So, pure liquids are also excluded from the equilibrium expression.

Example:

What is the equilibrium expression K_c for the following reaction?

Answer:

Since H_2O is pure liquid, it is omitted from the equilibrium expression:

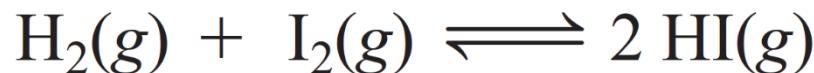
$$K_c = \frac{[\text{H}^+][\text{HCO}_3^-]}{[\text{CO}_2]}$$

Example:

What is the equilibrium expression K_c for the following reaction?

Answer:

Since $\text{CaCO}_3(s)$ and $\text{CaO}(s)$ are both solids, you omit them from the equilibrium expression:


$$K_c = [\text{CO}_2]$$

Summarizing The Significance of (K_{eq}) Values

- **$K_{eq} >> 1$** : Forward reaction is favored (the reaction moves right).
 - ✓ The position of equilibrium favors products.
- **$K_{eq} << 1$** : Reverse reaction is favored (the reaction moves left).
 - ✓ The position of equilibrium favors reactants.
- **$K_{eq} \approx 1$** : Neither direction is favored.
 - ✓ Reactants and products are present at equilibrium, i.e. **neither reactants nor products are favored**.

5.5 Calculating the K_{eq} from Measured Equilibrium Concentrations

Consider the reaction:

Suppose a mixture of H_2 and I_2 is allowed to come to equilibrium at 445 °C.

The measured concentrations at equilibrium were:

$$[\text{H}_2] = 0.11 \text{ M}, \quad [\text{I}_2] = 0.11 \text{ M}, \quad [\text{HI}] = 0.78 \text{ M}$$

What is the **value of the equilibrium constant** at this temperature? and predict whether reactants or products will be **favored** at equilibrium.

Answer:

$$K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{0.78^2}{(0.11) \times (0.11)} = 50 \quad (\text{Forward, products are favored})$$

5.5 Calculating the K_{eq} from Measured Equilibrium Concentrations

Example: Determine the K_c value using the following concentrations at equilibrium for the chemical reaction below, and predict whether reactants or products will be favored at equilibrium:

$$[\text{NOCl}]_{\text{eq}} = 1.34 \text{ M}, \quad [\text{NO}]_{\text{eq}} = 0.66 \text{ M}, \quad [\text{Cl}_2]_{\text{eq}} = 0.33 \text{ M}$$

Solution: $K_c = [\text{NO}]^2 [\text{Cl}_2] / [\text{NOCl}]^2$

$$K_c = ([0.66]^2 [0.33]) / [1.34]^2$$

$$K_c = (0.144) / (1.80)$$

$$K_c = 0.0801 \quad (\text{Reverse, the reactants are favored})$$

Assessment

Write the correct expression for the equilibrium constant K_{eq} for each chemical equation:

- 1) $C(s) + 2 H_2(g) \rightleftharpoons CH_4(g)$
- 2) $N_2(g) + O_2(g) + Br_2(g) \rightleftharpoons 2 NOBr(g).$
- 3) $2 NO(g) \rightleftharpoons N_2(g) + O_2(g)$
- 4) $CO_3^{2-}(aq) + H_2O(l) \rightleftharpoons HCO_3^-(aq) + OH^-(aq)$
- 5) $2 KClO_3(s) \rightleftharpoons 2 KCl(s) + 3 O_2(g)$
- 6) $HF(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + F^-(aq)$
- 7) $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
- 8) $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$

1st Semester
1439 – 1440 | 2018 – 2019

Taibah University
The Unified Scientific Track

ALWAYS LEARNING

P Pearson

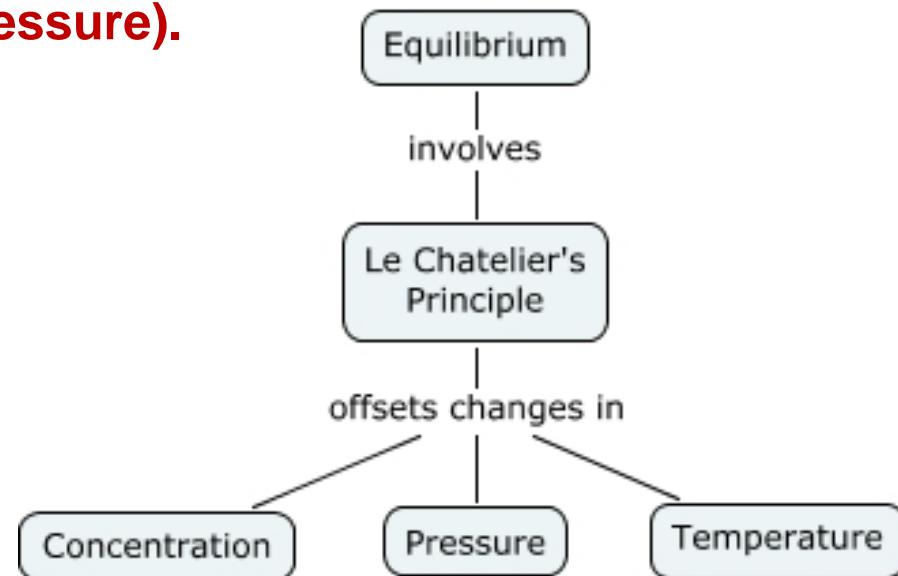
Chapter 5

Aqueous Solutions and Acids–Bases Equilibria

Topic 17

- Le Châtelier's Principle
- The Nature of Acids and Bases

5.6 Le Châtelier's Principle: How a System at Equilibrium Responds to Disturbances

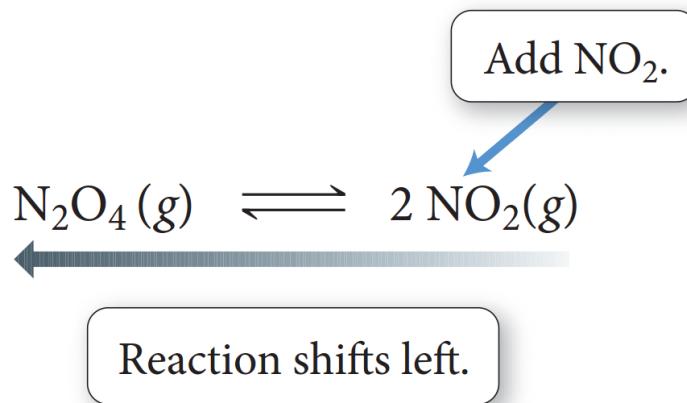

Le Châtelier's Principle: When a chemical system at equilibrium is disturbed; the system shifts in a direction that minimizes the disturbance.

In other words, a system at equilibrium tends to maintain equilibrium, it bounces back when disturbed: “Restoring Balance”

5.6 Le Châtelier's Principle: Factors Affecting Equilibrium

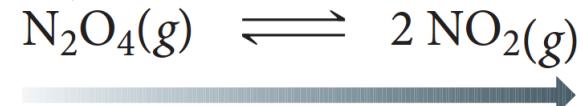
We can disturb a system in chemical equilibrium in different ways, including:

- ✓ Changing the **concentration** of a reactant or a product.
- ✓ Changing the **volume (or pressure)**.
- ✓ Changing the **temperature**.



The Effect of Concentration Change on Equilibrium

Consider this reaction in chemical equilibrium:


Suppose we disturb the equilibrium by **adding NO₂** to the equilibrium mixture, What happens? According to Le Châtelier's principle, the system will shift in a direction to minimize the disturbance. The reaction **goes to the left** side (it proceeds in the **reverse** direction)

The Effect of Concentration Change on Equilibrium: Example

On the other hand, what happens if we **add more N₂O₄**? In this case, the reaction **shifts to the right** side (it proceeds in the **forward** direction), consuming some of the added N₂O₄ and bringing its concentration back down (restoring equilibrium)

Add N₂O₄.

Reaction shifts right.

Important Note: adding or removing solid (*s*) or pure liquid (*l*) substances does **not** affect the equilibrium position – **Because their concentrations are not changed!**

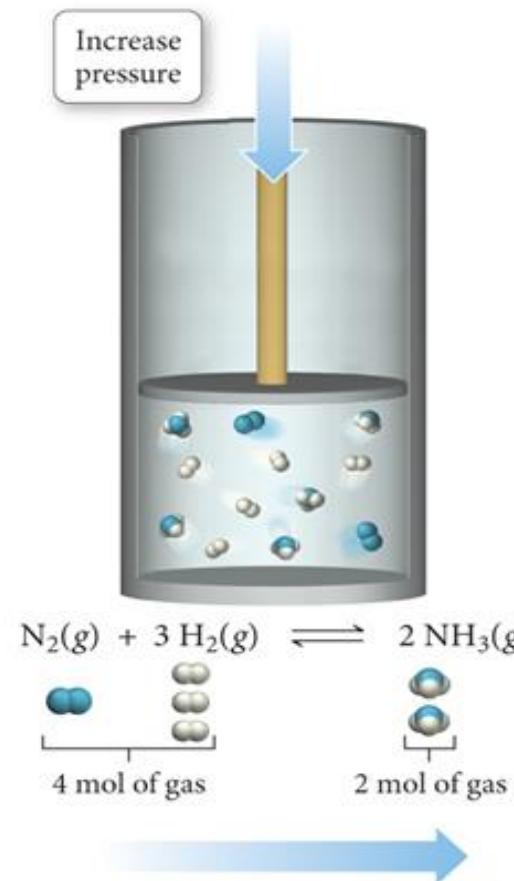
➤ **Example:** $\text{CaCO}_3(s) \rightleftharpoons \text{CaO}(s) + \text{CO}_2(g)$

In this reaction, increasing or decreasing CaCO₃ or (CaO) will not cause any change to the equilibrium.

➤ **Practice:** In the following reaction, what would be the effect of adding more H₂O?

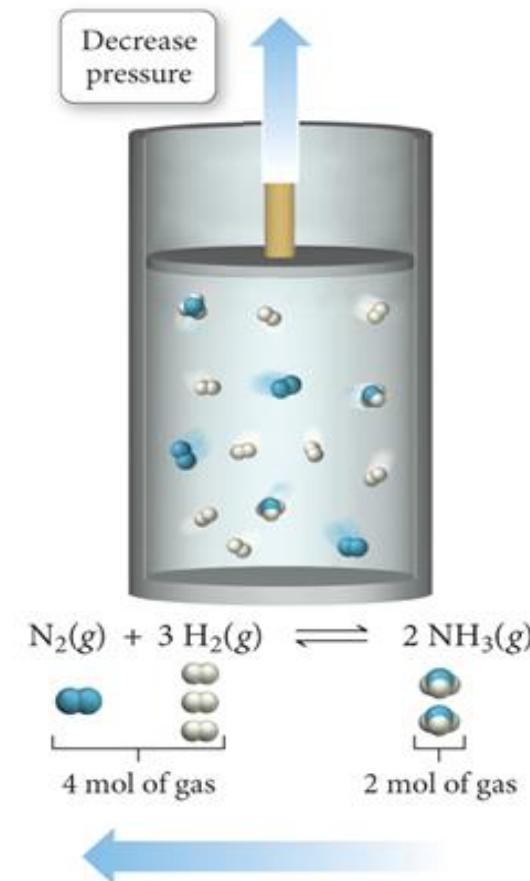
The Effect of Volume (or Pressure) Change on Equilibrium

- An increase in pressure (or a decrease in volume) will cause the system to shift to the side with the **fewest gas moles**.
- A decrease in pressure (or a increase in volume) will cause the system to shift to the side with the **most gas moles**.


✓ **Notice that**, changing pressure or volume **does NOT affect** the equilibrium in reactions with no gases included (either in reactants, products, or in both) – **because only gases are compressible**.

The Effect of Volume (or Pressure) Change on Equilibrium: Example

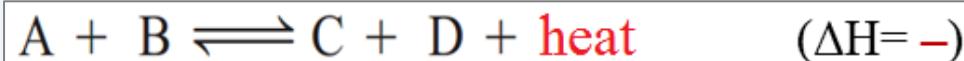
Le Châtelier's Principle: Changing Pressure


(a) **Decreasing the volume** increases the pressure, causing the reaction to shift to the right (**fewer moles of gas**).

(b) Increasing the volume reduces the pressure, causing the reaction to shift to the left (**more moles of gas**)

Reaction shifts right
(toward side with fewer moles of gas particles).

(a)

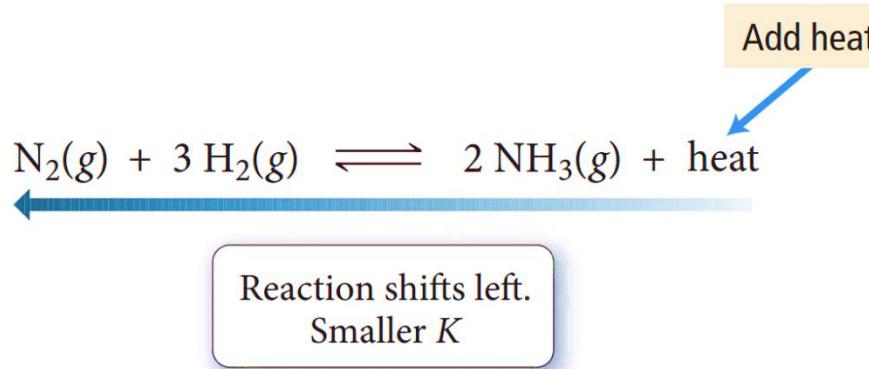

Reaction shifts left
(toward side with more
moles of gas particles).

(b)

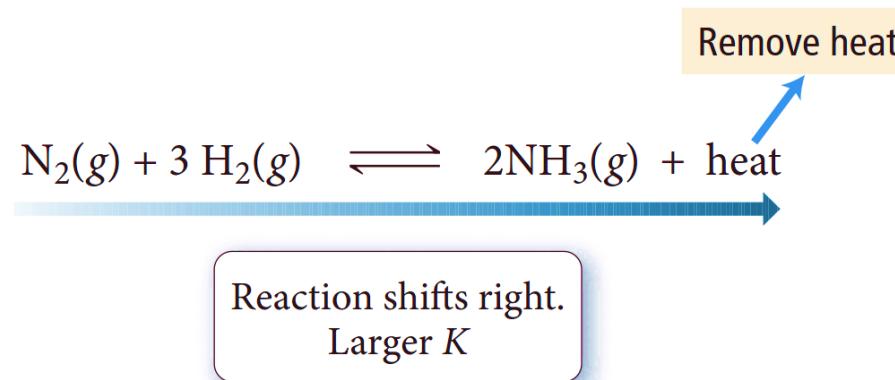
The Effect of Temperature Change on Equilibrium

If the **temperature** at equilibrium changes, the system should shift in the direction to **counter that change**, so if the temperature at equilibrium increases that tends to decrease the temperature and vice versa.

An **Exothermic Reaction** emits heat ($\Delta H = -$). We can think of heat as a “product”:



An **Endothermic Reaction** absorbs heat ($\Delta H = +$). We can think of heat as a “reactant”:


The Effect of Temperature Change on Equilibrium: Example

- At constant pressure, raising the temperature of an **exothermic reaction** (think of this as adding heat), causes the **reaction to shift left**.
 - Example:

- Conversely, lowering the temperature of an **exothermic reaction** (think of this as removing heat), causes the **reaction to shift right**.

- Example:

Le Châtelier's Principle: Exercises

Answer the following questions:

1. Consider the reaction at equilibrium: $2 \text{KClO}_3(s) \rightleftharpoons 2 \text{KCl}(s) + 3 \text{O}_2(g)$

Predict whether the reaction will shift left, shift right, or remain unchanged upon each disturbance.

- a. O_2 is removed
- b. KCl is added
- c. KClO_3 is added
- d. O_2 is added

2. This reaction is endothermic. $\text{C}(s) + \text{CO}_2(g) \rightleftharpoons 2 \text{CO}(g)$

Predict the effect (shift right, shift left, or no effect) of increasing and decreasing the reaction temperature.

3. Each reaction is allowed to come to equilibrium and then the volume is changed as indicated.

Predict the effect

- a. $\text{I}_2(g) \rightleftharpoons 2 \text{I}(g)$ (volume is increased)
- b. $2 \text{H}_2\text{S}(g) \rightleftharpoons 2 \text{H}_2(g) + \text{S}_2(g)$ (volume is decreased)
- c. $\text{I}_2(g) + \text{Cl}_2(g) \rightleftharpoons 2 \text{ICl}(g)$ (volume is decreased)
- d. $\text{C}(s) + \text{CO}_2(g) \rightleftharpoons 2 \text{CO}(g)$ (volume is increased)

4. Consider the reaction at equilibrium:

Predict whether the reaction will shift left, shift right, or remain unchanged upon each disturbance.

- a. adding N_2
- b. decreasing H_2
- c. increasing volume
- d. increasing pressure
- e. cooling down
- f. heating up

5.7 The Nature of Acids and Bases

General Properties of Acids

- Sour taste
- React with “active” metals
 - e.g. Al, Zn, Fe, but not Cu, Ag, or Au
 - Corrosive
- React with carbonates, producing CO_2
 - Marble, baking soda, chalk, limestone
- Blue litmus turns red.
- React with bases to form ionic salts:
 - Neutralization Reaction

General Properties of Bases “alkalis”

- Taste bitter
 - e.g. Alkaloids = plant product that is alkaline
- Often poisonous
- Solutions feel slippery to touch.
 - Gelatinous texture
- Red litmus turns blue.
- React with acids to form ionic salts:
 - Neutralization Reaction

Some Common Acids

Table 5.1: Some Common Acids

Name	Occurrence/Uses (See only, not for memorizing!)
Hydrochloric acid (HCl)	Metal cleaning; main component of stomach acid
Sulfuric acid (H ₂ SO ₄)	Fertilizer; dye and glue; automobile batteries
Nitric acid (HNO ₃)	Fertilizer; dye and glue manufacturing
Hydrofluoric acid (HF)	Metal cleaning; glass frosting
Phosphoric acid (H ₃ PO ₄)	Fertilizers, biological buffers, preservatives
Acetic acid (CH ₃ COOH)	Plastic & rubber; active component of vinegar
Citric acid [C ₃ H ₅ O(COOH) ₃]	Present in citrus food such as lemon and limes
Carbonic acid (H ₂ CO ₃)	Found in carbonated beverage

Occurrence/Uses of those acids are to be seen only, **not for memorizing!**

Some Common Bases

Table 5.2 Some Common Bases

Name	Occurrence/Uses (See only, not for memorizing!)
Sodium hydroxide (NaOH)	Soap and plastic manufacturing
Potassium hydroxide (KOH)	Cotton processing, soap production, batteries
Sodium bicarbonate (NaHCO_3)	Antacid, ingredient of baking soda
Sodium carbonate (Na_2CO_3)	Manufacturing of glass and soap, water softener
Ammonia (NH_3)	Detergent, fertilizer & fiber production

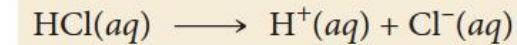
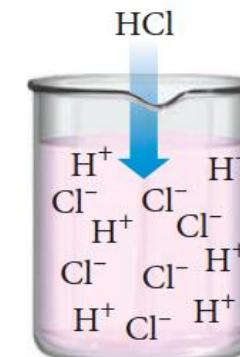
Occurrence/Uses of those bases are to be seen only, not for memorizing!

5.8 Definitions of Acids and Bases

We will examine three definitions of **acids** and **bases**:

- The Arrhenius definition
- The Brønsted-Lowry definition
- The Lewis definition

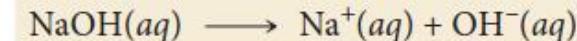
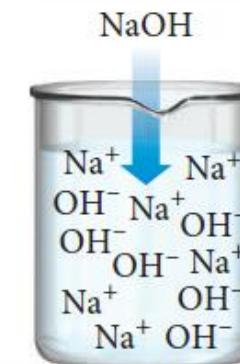
5.8 Definitions of Acids and Bases: The Arrhenius Definition



The Arrhenius Definition

➤ **Acid**: a substance that dissociates (ionizes) to produce H^+ ions in aqueous solutions.

For example: under the Arrhenius definition HCl is an acid because it produces H^+ ions in solution:

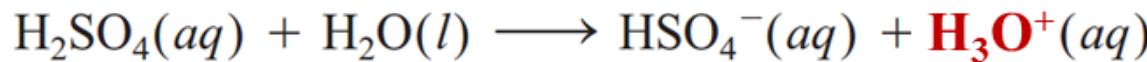
Arrhenius Acid

➤ **Base**: a substance that dissociates (ionizes) to produces OH^- ions in aqueous solutions.

For example: under the Arrhenius definition NaOH is a base because it produces OH^- ions in solution:

Arrhenius Base

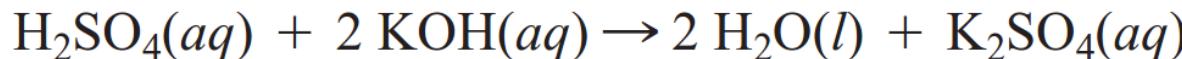
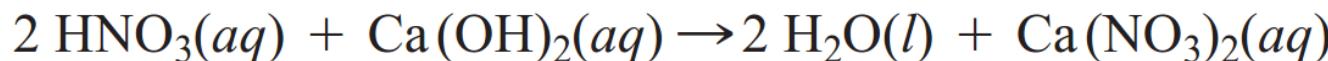
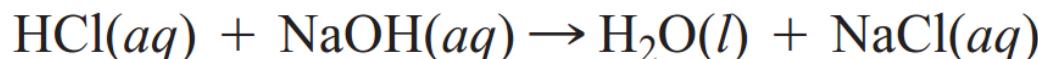


The Hydronium Ion: H_3O^+

- In aqueous solutions, H^+ ion attaches itself to H_2O to form H_3O^+ or “**hydronium ion**”:

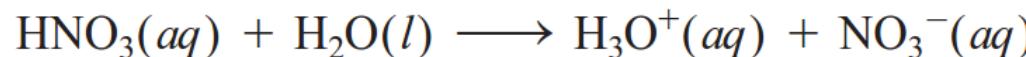
Examples:

Notice: $[\text{H}^+] = [\text{H}_3\text{O}^+]$ in aqueous solutions




Acid – Base Neutralization

Neutralization Reaction:

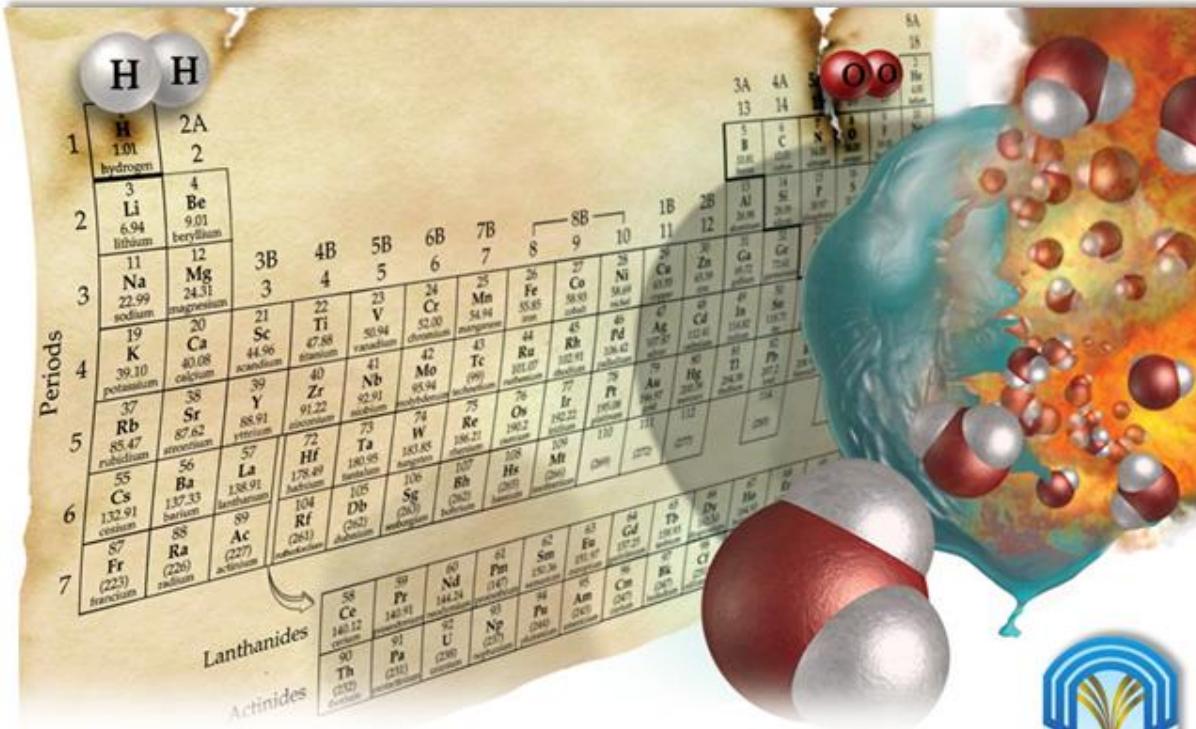
Under the Arrhenius definition, acid and base react together forming (water + salt), neutralizing each other:



Examples:

Classifying Acids by The Number of H⁺

- **Monoprotic Acids:** contain only one ionizable proton H⁺:
- ✓ For examples, HCl and HNO₃ contain only one ionizable proton, each:


- **Polyprotic Acids:** contain more than one ionizable proton H⁺ and release them sequentially:
- ✓ For example H₂SO₄ is a **diprotic acid**: contains two ionizable protons H⁺.
- ✓ Phosphoric acid (H₃PO₄) is a **triprotic acid**: contains three ionizable protons H⁺.

Strong and Weak Acids and bases: Common Examples

TABLE 5.3 Some Common Acids and Bases

Name of Acid	Formula	Name of Base	Formula
Hydrochloric acid	HCl	Sodium hydroxide	NaOH
Hydrobromic acid	HBr	Lithium hydroxide	LiOH
Hydroiodic acid	HI	Potassium hydroxide	KOH
Nitric acid	HNO ₃	Calcium hydroxide	Ca(OH) ₂
Sulfuric acid	H ₂ SO ₄	Barium hydroxide	Ba(OH) ₂
Perchloric acid	HClO ₄	Ammonia*	NH ₃ (weak base)
Acetic acid	HC ₂ H ₃ O ₂ (weak acid)		
Hydrofluoric acid	HF (weak acid)		

Important: Those examples on strong and weak acids and bases are to be **carefully memorized!**

1st Semester
1439 – 1440 | 2018 – 2019

Taibah University
The Unified Scientific Track

ALWAYS LEARNING

P Pearson

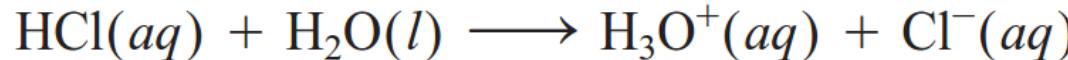
Chapter 5

Aqueous Solutions and Acids–Bases Equilibria

Topic 18

- Brønsted-Lowry Acids & Bases
- Acid Strength and pH Scale
- Base Solutions
- Buffered Solutions
- Lewis Acids & Bases

Brønsted – Lowry definition of acids and bases: focuses on the transfer of H^+ ion in an acid-base reaction.


According to Brønsted-Lowry:

- **Acid:** is a proton (H^+) donor
- **Base:** is a proton (H^+) acceptor

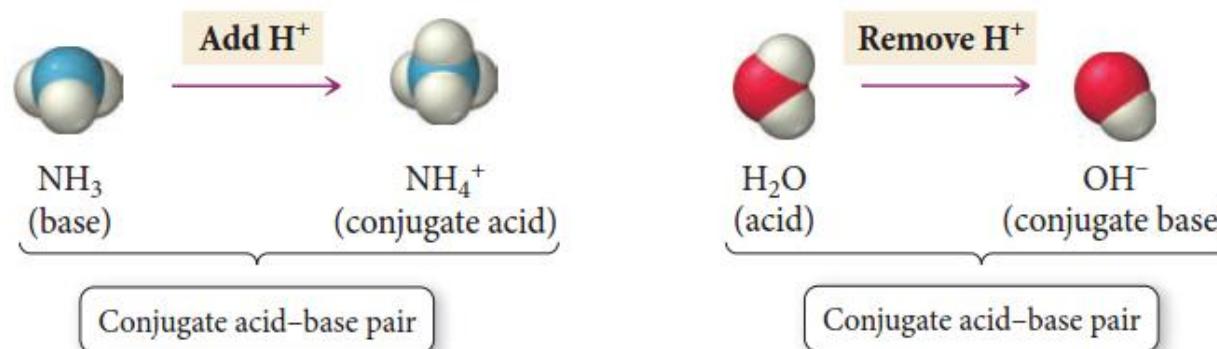
Definitions of Acids and Bases: The Brønsted – Lowry Definition

Under the **Brønsted-Lowry** definition, acids (proton donors) and bases (proton acceptors) always **occur together**:

➤ **Example 1:**

- ✓ HCl = **acid**, donates H⁺ (proton donor)
- ✓ H₂O = **base**, accepts H⁺ (proton acceptor)

➤ **Example 2:**

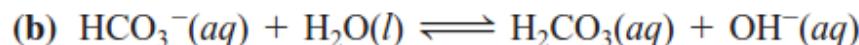

- ✓ NH₃ = **base**, accepts H⁺ (proton acceptor)
- ✓ H₂O = **acid**, donates H⁺ (proton donor)

Note: **water** in those two examples acted as an acid and as a base!

➤ A substance that can act as an acid and as a base is called “**amphoteric substance**”.

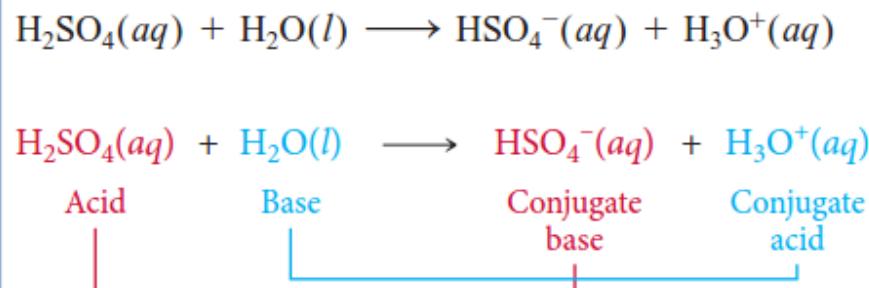
The Brønsted–Lowry Definition: Conjugate Acid – Base Pairs

A **conjugate acid–base pair** consists of two substances related to each other by the transfer of a proton (H^+):

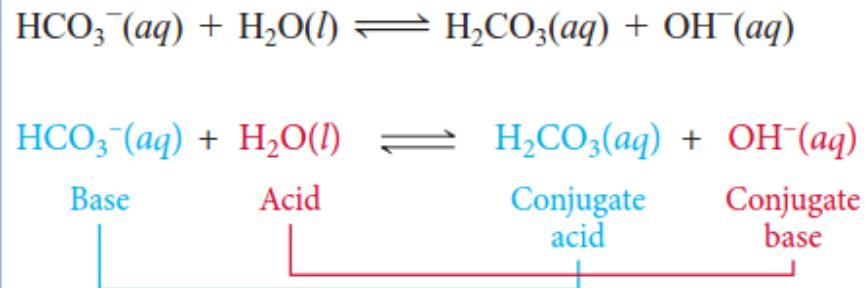


- ✓ A base accepts a proton and become a conjugate acid
- ✓ An acid donates a proton and become a conjugate base.

The Brønsted–Lowry Definition: Conjugate Acid – Base Pairs

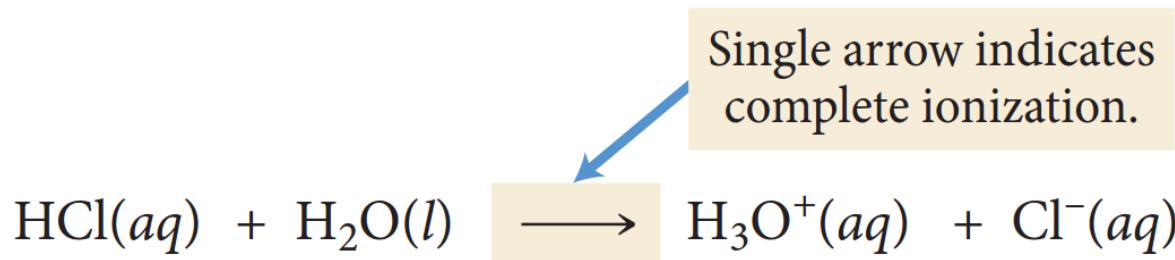

EXAMPLE 5.4 Identifying Brønsted–Lowry Acids and Bases and Their Conjugates

Identify the Brønsted–Lowry acid, the Brønsted–Lowry base, the conjugate acid, and the conjugate base in each reaction.



SOLUTION

(a) Since H_2SO_4 donates a proton to H_2O in this reaction, it is the acid (proton donor). After H_2SO_4 donates the proton, it becomes HSO_4^- , the conjugate base. Since H_2O accepts a proton, it is the base (proton acceptor). After H_2O accepts the proton it becomes H_3O^+ , the conjugate acid.



(b) Since H_2O donates a proton to HCO_3^- in this reaction, it is the acid (proton donor). After H_2O donates the proton, it becomes OH^- , the conjugate base. Since HCO_3^- accepts a proton, it is the base (proton acceptor). After HCO_3^- accepts the proton it becomes H_2CO_3 , the conjugate acid.

5.9 Acid Strength

- **A Strong acid:** completely ionizes in the solution.
- **A Weak acid:** partially ionizes in the solution.
- ✓ Example on strong acids: Hydrochloric acid (HCl):

A Strong Acid

When HCl dissolves in water, it ionizes completely.

➤ **All** HCl molecules have essentially ionized to form $\text{H}_3\text{O}^+(aq)$ and $\text{Cl}^-(aq)$.

5.9 Acid Strength

A 1.0 M HCl solution will have an H_3O^+ concentration of 1.0 M

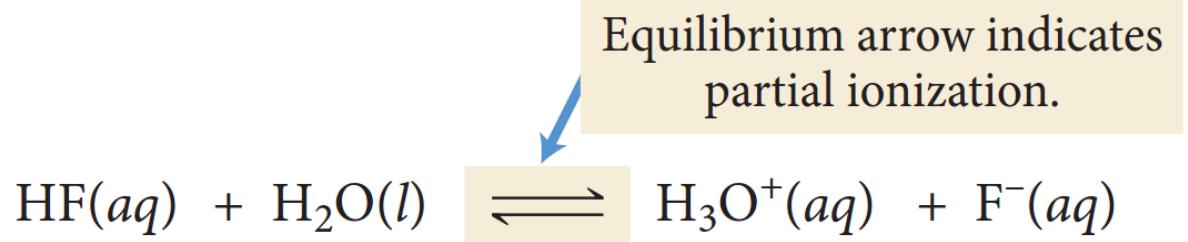
we say that 1.0 M HCl solution has $[\text{H}_3\text{O}^+] = 1.0 \text{ M}$.

TABLE 5.4 Strong Acids

Hydrochloric acid (HCl)

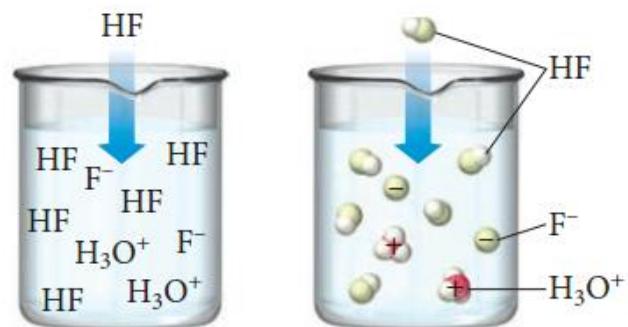
Hydrobromic acid (HBr)

Hydriodic acid (HI)


Nitric acid (HNO₃)

Perchloric acid (HClO₄)

Sulfuric acid (H₂SO₄) (*diprotic*)


5.9 Acid Strength

Weak acids: in contrast of HCl, **HF** is an example of a weak acid, one that does not completely ionize in solution:

An HF solution contains a lot of intact (un-ionized) HF molecules; it also contains some $\text{H}_3\text{O}^+(aq)$ and $\text{F}^-(aq)$. In other words, a 1.0 M HF solution has $[\text{H}_3\text{O}^+]$ that is less than 1.0 M because only some of the HF molecules ionize to form H_3O^+ .

A Weak Acid
When HF dissolves in water, only a fraction of the molecules ionize.

5.9 Acid Strength

TABLE 5.4 Some Weak Acids

Hydrofluoric acid (HF)

Acetic acid (HC2H3O2)

Formic acid (HCHO2)

Sulfurous acid (H2SO3) (*diprotic*)

Carbonic acid (H2CO3) (*diprotic*)

Phosphoric acid (H3PO4) (*triprotic*)

Two of the weak acids above are **diprotic**, meaning they have two ionizable protons, and one is **triprotic** (three ionizable protons).

Notice that: although acetic acid (CH3COOH) contains 4 hydrogen atoms in its formula, it's a **monoprotic** acid, because only one of the four hydrogens is “**ionizable**”

The pH Scale: A Way to Quantify Acidity and Basicity

The pH scale: is a compact way to specify the acidity of a solution. We define pH as:

$$\text{pH} = -\log [\text{H}^+]$$

or

$$\text{pH} = -\log [\text{H}_3\text{O}^+]$$

For example, a solution with $[\text{H}_3\text{O}^+] = 1.0 \times 10^{-3} \text{ M}$
has a pH of $-\log 1.0 \times 10^{-3} = -(-3.0) = 3.0$ (Acidic)

➤ **In general:**

$\text{pH} < 7.0$	Solution is acidic	$[\text{H}_3\text{O}^+] > [\text{OH}^-]$
$\text{pH} = 7.0$	Solution is neutral	$[\text{H}_3\text{O}^+] = [\text{OH}^-]$
$\text{pH} > 7.0$	Solution is basic	$[\text{H}_3\text{O}^+] < [\text{OH}^-]$

Self-Ionization of Water

Self-Ionization of Water:

- Since $[\text{H}_3\text{O}^+] = [\text{H}^+]$
- Product of $[\text{H}_3\text{O}^+]$ and $[\text{OH}^-]$ equals K_w

$$K_w = [\text{H}_3\text{O}^+] \times [\text{OH}^-] = 1.0 \times 10^{-14}$$

Example:

In a sample of juice at 25 °C, $[\text{H}^+] = 4.6 \times 10^{-4}$ M. Find $[\text{OH}^-]$:

$$[\text{OH}^-] = \frac{K_w}{[\text{H}^+]} = \frac{1.0 \times 10^{-14}}{4.6 \times 10^{-4}} = 2.17 \times 10^{-11} \text{ M}$$

The pH Values of Some Common Substances

TABLE 5.6 The pH of Some Common Substances

Substance	pH
Gastric juice (human stomach)	1.0–3.0
Limes	1.8–2.0
Lemons	2.2–2.4
Plums	2.8–3.0
Apples	2.9–3.3
Peaches	3.4–3.6
Cherries	3.2–4.0
Rainwater (unpolluted)	5.6
Human blood	7.3–7.4
Egg whites	7.6–8.0
Milk of magnesia	10.5
Household ammonia	10.5–11.5
4% NaOH solution	14

◀ (See only, not for memorizing!)

Notes

- Since the pH scale is a logarithmic scale, a change of 1 pH unit corresponds to a 10 fold change in H_3O^+ concentration:
 - For example, a lime with a pH of 2.0 is 10 times more acidic than a plum with a pH of 3.0
- Highly concentrated acid solutions can have a negative pH:
 - Example: if $[\text{H}_3\text{O}^+] = 2 \text{ M} \rightarrow \text{pH} = -\log(2) = -0.3$

The pH Scale: pH and pOH scales

- As mentioned before, **The pH** values are calculated using the equation:

$$pH = -\log [H_3O^+]$$

- There is also **a pOH scale**, based upon the hydroxide ion concentration $[OH^-]$ with the equation:

$$pOH = -\log [OH^-]$$

For Acids,
 $pH = -\log [H_3O^+]$

For Bases,
 $pOH = -\log [OH^-]$

- **pH** and **pOH** are related by:

$$pH + pOH = 14$$

The pH Scale: Practice

Example 5.5: Calculating pH from $[\text{H}_3\text{O}^+]$ or $[\text{OH}^-]$:

Calculate the pH of a solution at 25°C and indicate whether the solution is acidic or basic, if:

(a) $[\text{H}_3\text{O}^+] = 1.8 \times 10^{-4} \text{ M}$

(b) $[\text{OH}^-] = 1.3 \times 10^{-2} \text{ M}$

Solution:

(a) $[\text{H}_3\text{O}^+] = 1.8 \times 10^{-4} \text{ M}$:

$$\text{pH} = -\log[\text{H}_3\text{O}] = -\log(1.8 \times 10^{-4}) = -(-3.74) = 3.74$$

Since $\text{pH} < 7$, the solution is **acidic**.

(b) $[\text{OH}^-] = 1.3 \times 10^{-2} \text{ M}$:

$$\text{pOH} = -\log[\text{OH}] = -\log(1.3 \times 10^{-2}) = 1.88$$

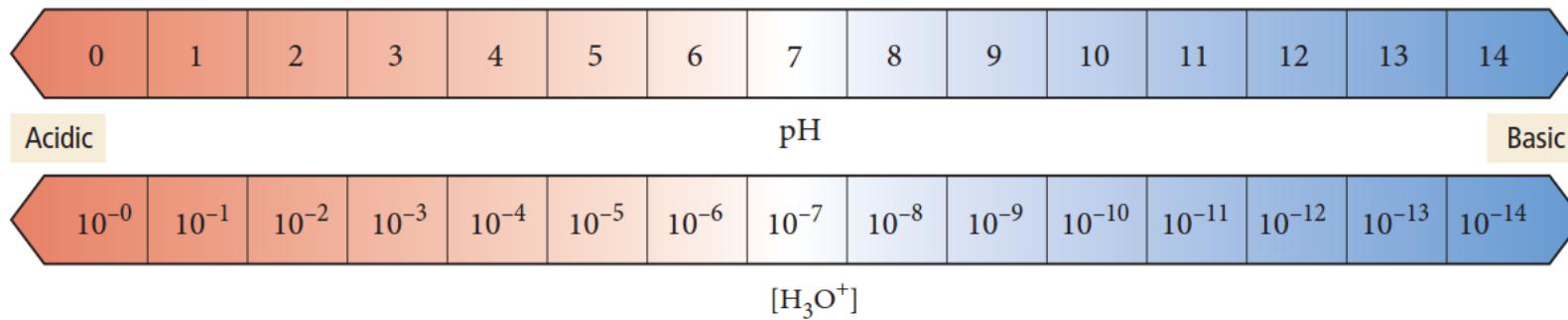
Using $\text{pH} + \text{pOH} = 14$, we get $\text{pH} = 14 - \text{pOH}$

$$\text{Then } (14.0) - (1.88) = 12.12$$

Since $\text{pH} > 7$, the solution is **basic**.

The pH Scale: Practice

EXAMPLE 5.6 Calculating $[\text{H}_3\text{O}^+]$ from pH

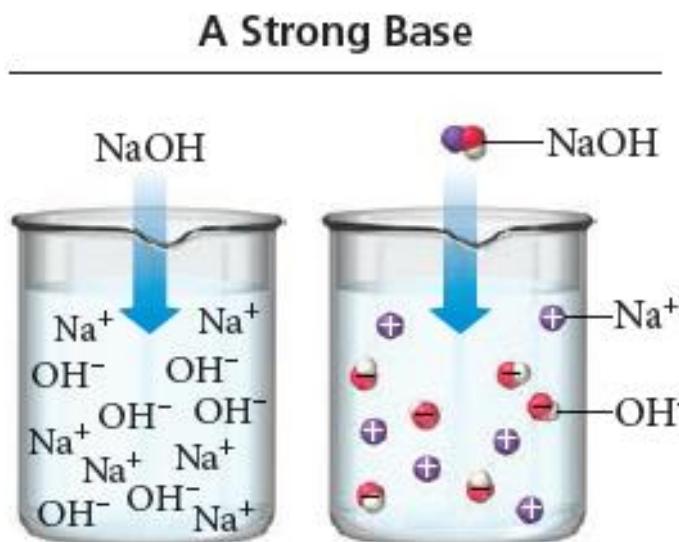

Calculate the H_3O^+ concentration for a solution with a pH of 4.80.

SOLUTION

To find the $[\text{H}_3\text{O}^+]$ from pH, start with the equation that defines pH. Substitute the given value of pH and then solve for $[\text{H}_3\text{O}^+]$. Since the given pH value is reported to two decimal places, the $[\text{H}_3\text{O}^+]$ is written to two significant figures. (Remember that $10^{\log x} = x$. Some calculators use an inv log key to represent this function.)

$$\begin{aligned}\text{pH} &= -\log [\text{H}_3\text{O}^+] \\ 4.80 &= -\log [\text{H}_3\text{O}^+] \\ -4.80 &= \log [\text{H}_3\text{O}^+] \\ 10^{-4.80} &= 10^{\log [\text{H}_3\text{O}^+]} \\ 10^{-4.80} &= [\text{H}_3\text{O}^+] \\ [\text{H}_3\text{O}^+] &= 1.6 \times 10^{-5} \text{ M}\end{aligned}$$

The pH Scale


▲ **Figure 5.11 The pH Scale** An increase of 1 on the pH scale corresponds to a decrease in $[\text{H}_3\text{O}^+]$ by a factor of 10.

5.10 Base Solutions

- **A Strong Base** is one that **completely** dissociates in aqueous solutions releasing OH^-
- NaOH, is a strong base:

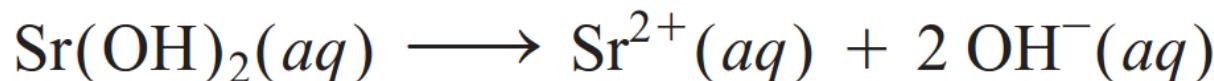
- ✓ The NaOH solution contains no intact NaOH. It all has dissociated to form $\text{Na}^+_{(aq)}$ and $\text{OH}^-_{(aq)}$

TABLE 5.7 Strong Bases

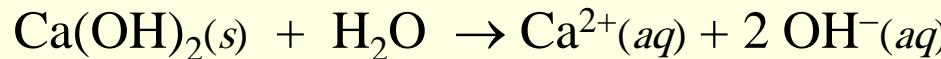
Lithium hydroxide (LiOH)

Strontium hydroxide [Sr(OH)₂]

Sodium hydroxide (NaOH)


Calcium hydroxide [Ca(OH)₂]

Potassium hydroxide (KOH)


Barium hydroxide [Ba(OH)₂]

5.10 Base Solutions

Bases containing two OH^- ions dissociate in one step. For example, $\text{Sr}(\text{OH})_2$ dissociates as follows:

Calculate the pH of 0.011 M $\text{Ca}(\text{OH})_2$:

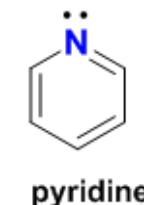
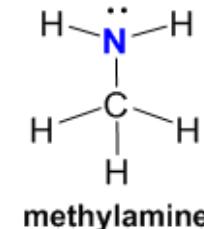
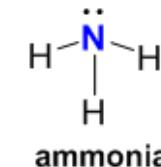
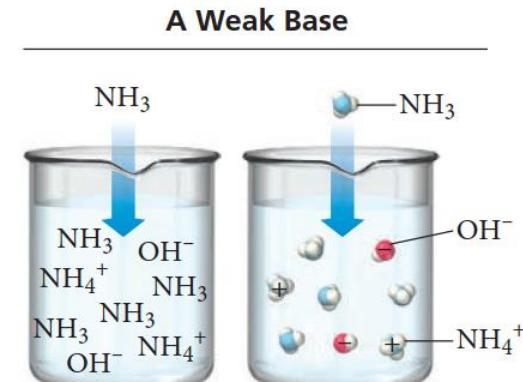
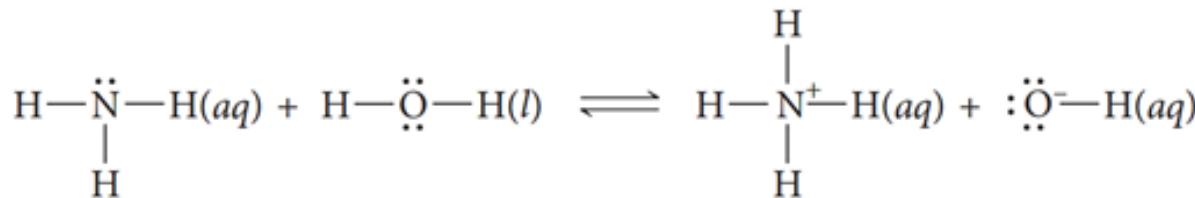
- $[\text{OH}^-] = 2 \times [\text{Ca}(\text{OH})_2] = 2 \times 0.011 \text{ M} = 0.022 \text{ M}$

$$\text{pOH} = -\log(0.022) = 1.66$$

$$\text{pH} = 14 - \text{pOH} = 14 - 1.66 = 12.34$$

- **Calculate $[\text{H}^+]$ in the solution?**

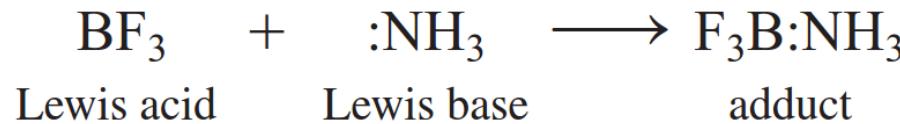
$$[\text{H}^+] = 10^{-\text{pH}} = 10^{-12.34} = 4.6 \times 10^{-13} \text{ M}$$






5.10 Base Solutions

A Weak Base: a substance that produces OH^- by accepting a proton from water (i.e. ionizing water to form OH^-).

- **Ammonia**, for example, ionizes water as follows:

- ✓ The common element in most weak bases is a “**N atom**” with a lone pair of electrons.
- ✓ The lone pair accepts a proton and makes the substance a base.
- ✓ As shown in the reactions of ammonia (NH_3):

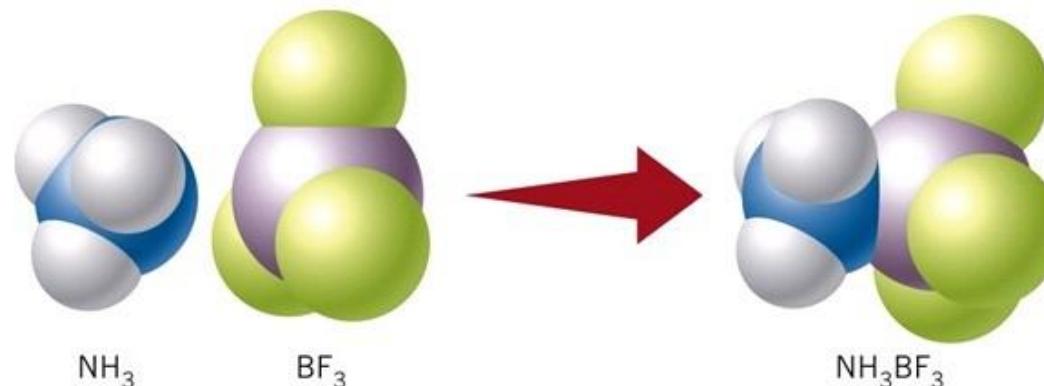
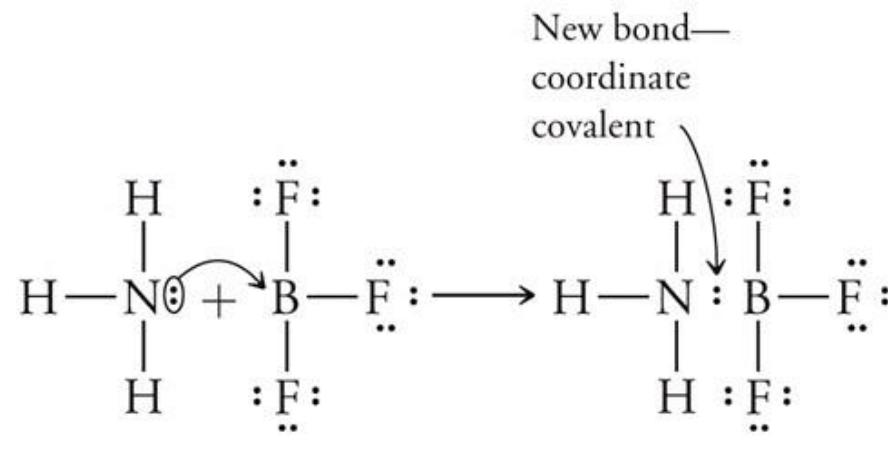

Buffers (or Buffered Solutions)

- **Buffers (or buffered solutions)** are solutions that resist drastic changes in their pH when small amounts of strong acids or bases are added to them.
 - ✓ Buffers contain weak conjugate acid-base pairs.
 - ✓ Human blood, for example, is a complex buffered solution that maintain the blood pH at about 7.4.
- Buffers are often prepared by mixing a weak acid (or a weak base) with a salt of that acid or base:
- **Examples on buffers (See only, not for memorizing!):**
 - $\text{CH}_3\text{COOH} + \text{CH}_3\text{COONa}$ (weak acid + its salt) = buffer
 - $\text{HF} + \text{NaF}$ (weak acid + its salt) = buffer
 - $\text{NH}_3 + \text{NH}_4\text{Cl}$ (weak base + its salt) = buffer

5.12 Definitions of Acids and Bases: Lewis Acids and Bases

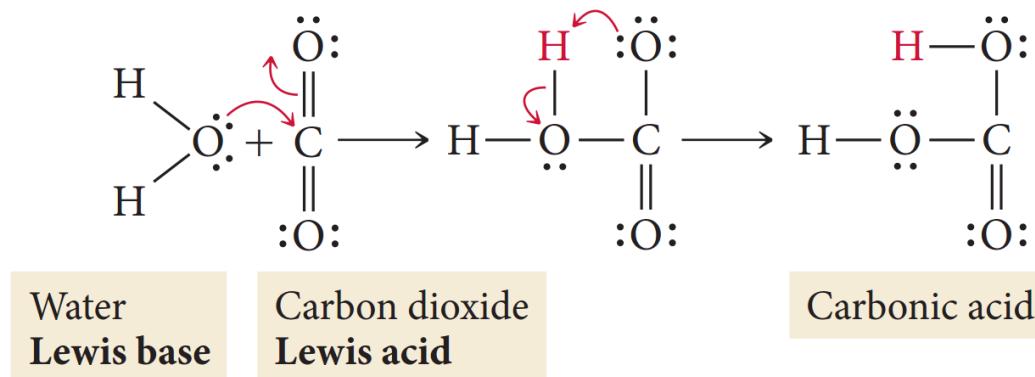
Lewis defined acids and bases as:

- **Lewis acid:** electron pair acceptor
- **Lewis base:** electron pair donor
- ✓ The product of a Lewis acid-base reaction is sometimes called:
adduct):

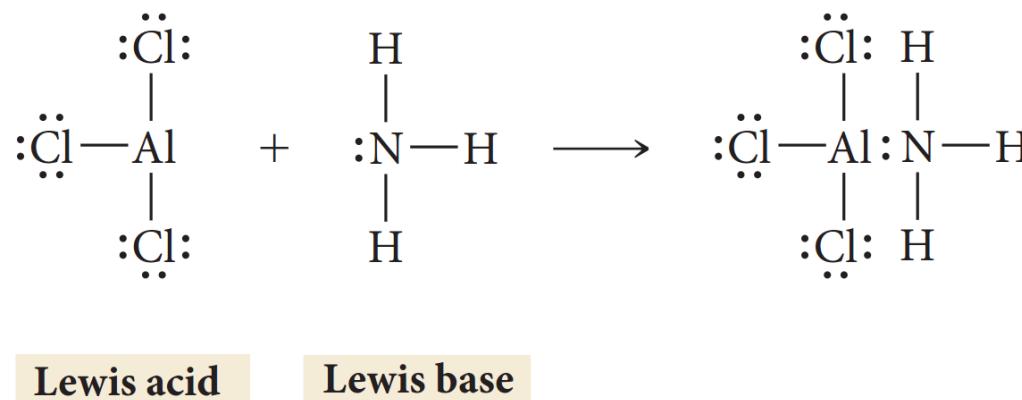



- ✓ A Lewis acid has an empty orbital (or can rearrange electrons to create an empty orbital) that can accept an electron pair.

- ✓ **Examples on Lewis acids (to be memorized):** BF_3 , AlCl_3 and CO_2
- ✓ **Examples on Lewis bases (to be memorized):** NH_3 , F^- , OH^- and H_2O


5.12 Lewis Acids and Bases: Example

Example: NH_3 (Lewis base) + BF_3 (Lewis acid)



5.12 Lewis Acids and Bases: Examples

Example: H_2O (Lewis base) + CO_2 (Lewis acid)

Example: AlCl_3 (Lewis acid) + NH_3 (Lewis base)

Assessment

Answer the following questions:

1. For each strong base solution, determine $[\text{OH}^-]$, $[\text{H}_3\text{O}^+]$, pH, and pOH.
 - a. 0.15 M NaOH
 - b. 1.5×10^{-3} M Ca(OH)₂
 - c. 4.8×10^{-4} M Sr(OH)₂
 - d. 8.7×10^{-5} M KOH
2. Determine the $[\text{OH}^-]$, pH, and pOH of a 0.15 M HCl(*aq*)
3. For each reaction, identify the Brønsted–Lowry acid, the Brønsted–Lowry base, the conjugate acid, and the conjugate base.
 - a. $\text{H}_2\text{CO}_3(\text{aq}) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}_3\text{O}^+(\text{aq}) + \text{HCO}_3^-(\text{aq})$
 - b. $\text{NH}_3(\text{aq}) + \text{H}_2\text{O}(l) \rightleftharpoons \text{NH}_4^+(\text{aq}) + \text{OH}^-(\text{aq})$
 - c. $\text{HNO}_3(\text{aq}) + \text{H}_2\text{O}(l) \longrightarrow \text{H}_3\text{O}^+(\text{aq}) + \text{NO}_3^-(\text{aq})$
4. Write the formula for the conjugate base of each acid.
 - a. HCl
 - b. H₂SO₃
 - c. HCHO₂
 - d. HF
5. Determine the $[\text{OH}^-]$ and pH of a solution that is 0.140 M HBr(*aq*)
6. Classify each species as either a Lewis acid or a Lewis base.
 - a. Fe³⁺
 - b. BH₃
 - c. NH₃
 - d. F⁻

▲ The periodic table of the elements