

Chemistry-202-1.4

الملخص الشامل - All in one

Note that :

 \neq Because E and PV have energy units

:Enthalpy also has energy units.

 \neq E, P and V are all state function

 \therefore Change in H or Δ H depends only on initial and final state

Note that :

q is not a state function ,why?! Because the "path" is defined and therefore it can have only a specific value. If the reaction carried out at constant volume

 $q_{v} = \Delta H$ $qv = \Delta H$

Chemistry-202-1.4

 $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l) \quad \Delta H = -890.4 \text{ kJ/mol}$

Enthlpy of Reactions

Because most reactions are constant-pressure processes.

we can equate the heat in these cases to the change in enthalpy.

Enthalpy of reaction (ΔH) :

Is the difference between the enthalpies of the products and the enthalpies of the reactants?

 $\Delta H = H(products) - H(reactants)$

Thus, the following conversion factors can be created:

-890.4 kJ	-890.4 kJ	-890.4 kJ	-890.4 kJ
1 mol CH ₄	$2 \mod O_2$	1 mol CO ₂	$2 \text{ mol } H_2O$

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057

3

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057

5

A Comparison of ΔH and ΔE

What is the relationship between ΔH and ΔE for a process?

To find out, let us consider the reaction between sodium metal and water

2Na (s) +2H₂O (l) \rightarrow 2NaOH (aq) +H₂ (g) Δ H=-367.5 kJ/mole

This thermochemical equation says that when two moles of sodium react with an excess of water, 367.5 kJ of heat are given off.

• To calculate the change in internal energy, we rearrange Equation as follows: $\Delta E = \Delta H + P\Delta V$

If we assume the temperature to be 25°C and ignore the small change in the volume of the solution, we can show that the volume of 1 mole of H_2 gas at 1.0 atm and 298 K is 24.5 L, so that - P ΔV = -24.5 L.atm or -2.5 kJ.

• Finally

ΔE =-367.5 kJ/mol - 2.5 kJ/mol

<mark>= -370.0 kJ/mol</mark>

This calculation shows that ΔE and ΔH are approximately the same.

• Another way to calculate the internal energy change of a gaseous reaction is to assume ideal gas behavior and constant temperature. In this case

 $\mathbf{E} = \Delta \mathbf{H} - \Delta(\mathbf{P}\mathbf{v})$

 $= \Delta H - \Delta (nRT)$

<mark>= ∆H - RT∆n</mark>

Where Δn is defined as

 $\Delta n = number of moles of product gases - number of moles of reactant gases.$

2. Calculate the change in internal energy when 2 moles of CO are converted to 2 moles of CO_2 at 1 atm and 25°C:

 $2CO(g) + O_2(g) \rightarrow 2CO_2(g) \quad \Delta H = -566.0 \text{ kJ/mole}$

Solution:

 $\Delta E = \Delta H - RT (\Delta n)$

 $\Delta E = -566000.0 - (8.314 \times 298 \times -1) = -563.5 \text{ kJ/mole}$

Chemistry-202-1.48All in one - Umber of Indication Interpretation of the second state of the se

w = -p v = 1*61.09 = 61.09 L.atm

1L.atm = 101.3J

W=61.09 *101.3 = 6188.417 J

$$\therefore W = \frac{6188.417}{1000} = 6.187 KJ$$

4. A gas is compressed in a cylinder from a volume of 20 L to 2.0 L by a constant pressure of 10.0 atm.

Calculate the amount of work done on the system.

A) $1.01 \times 104 \text{ J}$ C) $1.81 \times 104 \text{ J}$ B) -180 JD) $-1.81 \times 10^4 \text{ J}$

Solution

 $W = -p \, dv = -p \, (v_f - v_i)$ = -10×(2-20) = 180L.atm $W = 180 \times 101.3 = 1.8 \times 10^4 J$

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057

8

Chemistry-202-1.4	9	الملخص الشامل - All in one				
5. Calculate the amount	of work done	against an atmospheric				
pressure of 1.00 atm when 500.0 g of zinc dissolves in excess acid at						
30.0°C. $Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(g)$						
A) $w = +22.4 \text{ kJ}$		C) $w = +24.9 \text{ kJ}$				
B) <u>w = -19.4 kJ</u>	B) <u>w = -19.4 kJ</u>					
Solution						
Zn(s) + 2H	H^+ (aq) $\rightarrow Zn^{2+}$	$(aq) + H_2(g)$				
65g		1 mole				
500g		x mole				
عدد مولات المهيدر وجين الناتج هو 7.7 مول						
W =-pv						
=-p(nRT/p)						
=-191.314 L.atm						
=-19.38KJ						
17.50KJ						

Chemistry-202-1.4]	- الملخص الشامل - All in one			
6. A	gas is allowed to e	ypand, at	constant	temperature, from a		
volum	ne of 1.0 L to 10.1	L against	an external	pressure of 0.50 atm. If		
the ga	as absorbs 250 J o	f heat fro	om the sur	coundings, what are the		
values of σ w and ΔE ?						
		W	٨F			
Row 1	<u> </u>	_460 I	-210 I			
Row 2	-250 J	-460 J	-710 J			
Row 3	250 J	460 J	710 J			
Row 4	4 –250 J	460 J	210 J			
Row 5	5 250 J	-4.55 J	245 J			
Δ)	Pow 1		\mathbf{C}	Pow 3		
<u>A)</u>	NOW 1		C) 1	KOW 5		
B)	Row 2		D)	Row 4		
Solution						
w = -pdv = -0.5*9.1 = -4.55*101.3 = -460 J						
q = +250J						
$\therefore AF = a + w = 250 - 460 = -210 I$						
$- \Delta L = q + w = 200 + 100 = - 210 $						
7 For which of these reactions will the difference between						
AU° and AE° be the greatest						
A) $2H_2O_2(1) \rightarrow 2H_2O(1) + O_2(g)$ C) $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$						

 $CaCO3(s) \rightarrow CaO(s) + CO2(g)$ <u>D</u> <u>2C2H6(g) + 7O2(g) \rightarrow 4CO2(g) + 6H2O(l)</u> B)

