The second law of thermodynamics

The second law of thermodynamics \rightarrow the entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process.

- ★ The entropy change in the universe (ΔS_{univ}) for any process is the sum of the entropy changes in the system (ΔS_{sys}) and in the surrounding.
- $\checkmark \Delta S$ universe must be greater than zero.
- \checkmark It doesn't place restriction on either ΔS sys or $\Delta S_{surr.}$
- ✓ It's possible for either ΔS_{sys} or ΔS_{surr} to be negative.

 $\therefore \Delta Suniv = \Delta S sys + \Delta Ssurr > 0$

For an equilibrium process:

 $\checkmark \Delta S_{univ}$ is zero.

 $\checkmark \Delta S_{sys}$ and ΔS_{surr} must be equal in magnitude, but opposite in sign.

 $\therefore \Delta Suniv = \Delta S sys + \Delta Ssurr = 0$

Entropy changes in the system

* To calculate ΔS_{univ} , we need to know both " ΔS_{sys} and ΔS_{surr} ".

To know ΔS_{sys}

 \rightarrow Suppose that the system is represented by the following reaction.

 $aA+bB \rightarrow cC+dD$

: The standard entropy of reaction $\Delta S^{\circ}rxn$

$$\Delta S_{rxn} = [cS^{\circ}(C) + dS^{\circ}(D)] - [aS^{\circ}(A) + bS^{\circ}(B)]$$

In general

 $\Delta S_{rxn} = \sum n S^{\circ}(product) - \sum m S^{\circ}(reactants)$

 \rightarrow represent summation in the reaction

 $m, n \rightarrow$ Stoichiometric Coefficients

The standard entropy Value for a large number of compound have been measured in J/k.mol

Note

 $\Delta \mathbf{S}_{\mathbf{rxn}} = \Delta \mathbf{S}_{\mathbf{sys}}$

Chemistry-2-ch.2.4All in one - United to the standard entropyExample 1:From the standard entropy values, calculate the standard entropy
changes for the following reactions at 25°Ca) CaCO3(s)
$$\rightarrow$$
 CaO(s) + CO2(g) $\Delta S_{rxn} = [S^{\circ}(Cao) + S^{\circ}(CO2)] - [S^{\circ}(CaCO3)]$
 $= [39.8 + 213.6] - [92.9] = \frac{160.5J}{K.mol}$ b) N2(g) + 3H2(g) \rightarrow 2 NH3(g) $\Delta S^{\circ}rxn =$ $[2 S^{\circ}(NH3)] - [S^{\circ}(N2) + 3S^{\circ}(H2)]$
 $= [2 * 193] - [192 + (3 * 131)] = \frac{-199J}{K.mol}$

C)
$$H_{2(g)} + CI_2 \rightarrow 2HCI(g)$$

$$\Delta S^{\circ}rxn = [2S^{\circ}(HCl)] - [S^{\circ}(H2) + S^{\circ}(Cl2)]$$

$$= [2 * 187] - [131 + 223] = \frac{20J}{K.mol}$$

الملخص الشامل - All in one

✤There are some general rules

 \checkmark If a reaction produces more gas molecules than it consumes.

 $\therefore \Delta S$ is positive.

✓ If The total number of gas molecules diminishes.

 $\therefore \Delta S$ is negative.

✓ If There is net change in the total number of gas molecules.

 $\therefore \Delta S^{\circ}$ may be positive or negative, but will be ralatively

small numerically.

✓ gases invariably have greater entropy than liquid and solid.
 ✓ For reactions involving only liquid and solid predicting the sign of ΔS° is more difficult.

الملخص الشامل - All in one

Example 2:

Predict whether the entropy change of the system in each of the following reactions is positive or negative.

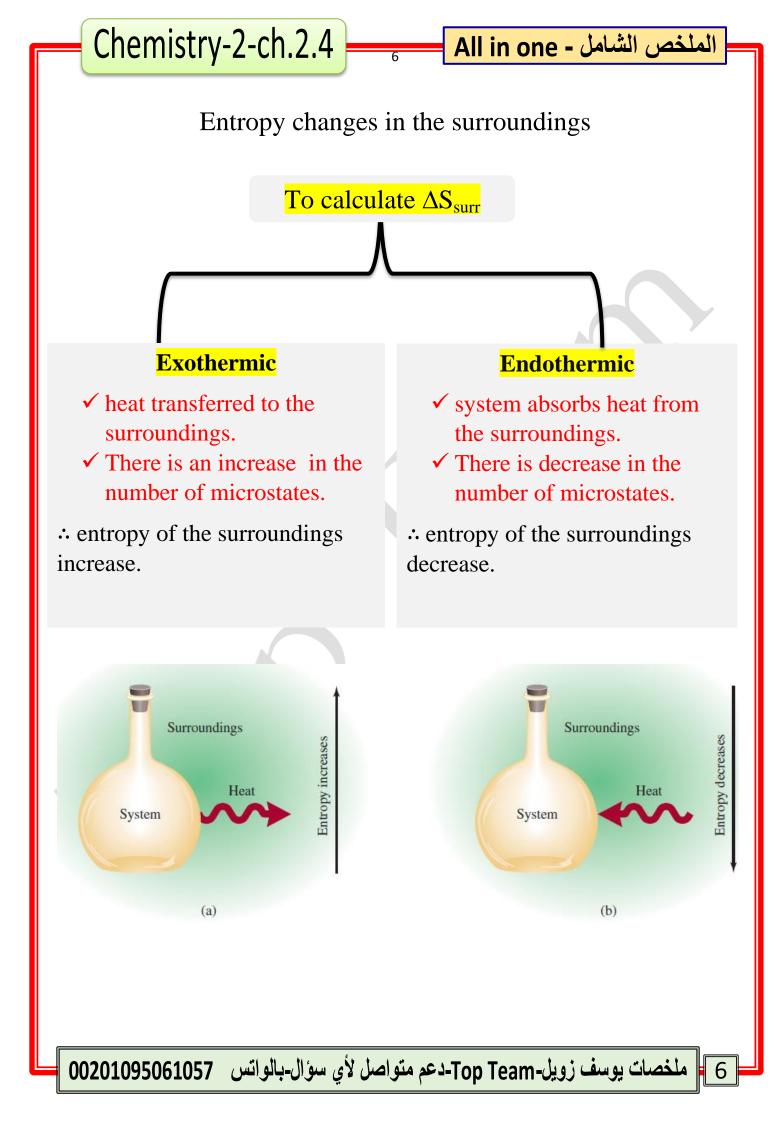
a) $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(L)}$

- Two reactant molecules combine to form one product molecule.
- ✤ gases are converted to liquid.

 \therefore number of microstates will be diminished and hence ΔS° is negative.

b) $NH_4Cl_{(s)} \rightarrow NH_{3(g)} + HCl_{(g)}$

✤ a solid is converted to two gaseous products.


 $\therefore \Delta S$ is positive.

c) $H_{2(g)} + Br_{2(g)} \rightarrow 2HBr_{(g)}$

The same number of molecules is involved in the reactants as in the product.

all molecules are diatomic.

So, we can't predict the sign of ΔS° .

الملخص الشامل - All in one

- For a constant- pressure processes
- \checkmark The heat change is equal to the enthalpy change of the system.
- ✓ The change in entropy of the surroundings is proportional to ΔH_{sys} .

 $\Delta S_{surr} \alpha$ - ΔH_{sys}

If the process is exothermic $\rightarrow \Delta H_{sys}$ is negative.

 $\rightarrow \Delta S_{surr}$ is positive.

and this indicating an increases in entropy.

If the process is endothermic $\rightarrow \Delta H_{sys}$ is positive.

 $\rightarrow \Delta S_{surr}$ is negative.

and this ensures that the entropy of the surrounding decreases.

Note that:

- The change in entropy for a given amount of heat absorbed also depends on the temperature.
- From the inverse relationship between ΔSsurr and temperature T
 " in Kelvins" that is, The higher the temperature, The smaller
 the ΔSsurr and Vice versa, we can rewrite the above
 relationships as:

الملخص الشامل - All in one

Example 3 :

Calculate ΔS_{sys} and ΔS_{surr} to the synthesis of ammonia and wheather the reaction is spontaneous at 25°C

$$N_{2(g)} + 3H_2 \rightarrow 2NH_{3(g)} \qquad \Delta H^{0}_{rxn} = -$$
92.6KJ/mol

 $\Delta S^{o}_{rxn} = \Delta S_{sys}$ $\therefore \Delta S^{\circ} r x n = [2S^{\circ}(NH3)] [S^{\circ}N2 + 3S^{\circ}H2]$ = [2 * 193] - [192 + 3 *131]= - 199J/K.mol $\therefore \Delta S^{\circ} r x n = -\frac{199 J}{\kappa} . \text{ mol}$ T = 25 + 273 = 298K $\Delta Ssurr = \frac{-\Delta sys}{T}$ $\Delta \text{Ssurr} = \frac{-(-92.6 * 1000)}{298}$ $=\frac{311J}{K}.mol$ $\Delta S_{uni} = \Delta S_{sys} + \Delta S_{sur}$ = -199 + 311 = 112J/K.mol

because ΔS_{uni} is positive ...The reaction is spontaneous at 25°C

The third law of thermodynamics and Absolute entropy

q

Third Law of thermodynamics \rightarrow The entropy of a perfect crystalline substance is zero at the absolute zero of temperature.

- ✓ As the temperature increases, the freedom of motion increases and hence also the number of microstates.
- ✓ So, the entropy of any substance at a temperature above 0K is greater than zero.

If the crystal is impure or if it has defects, then its entropy is greater than zero even at 0K.

Absolute entropy of the substance.

When we know the entropy of a pure crystalline substance is zero at absolute zero, we can measure the increase in entropy of the substance when it is heated from 0K to say, 298K

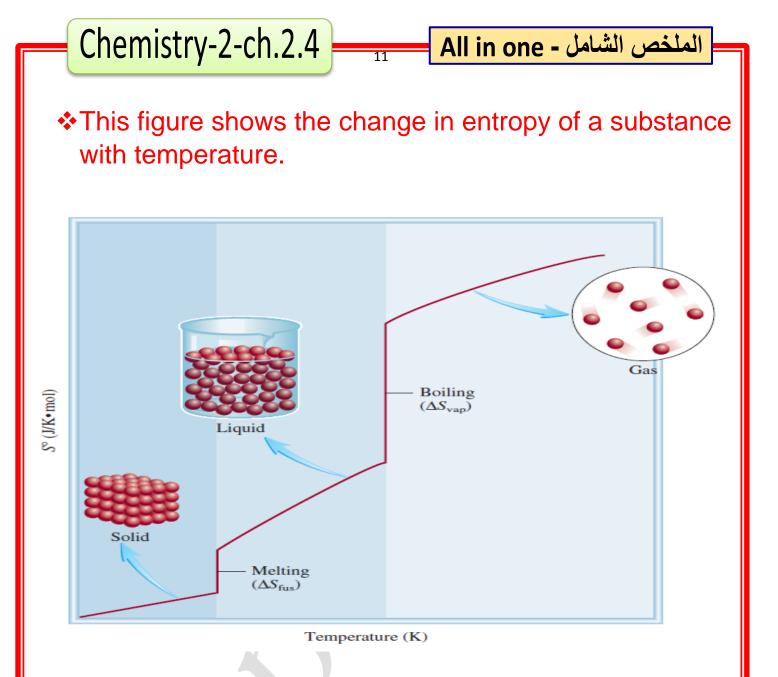
The change in entropy is given by

$$\Delta S = S_f - S_i$$

 $= S_f$

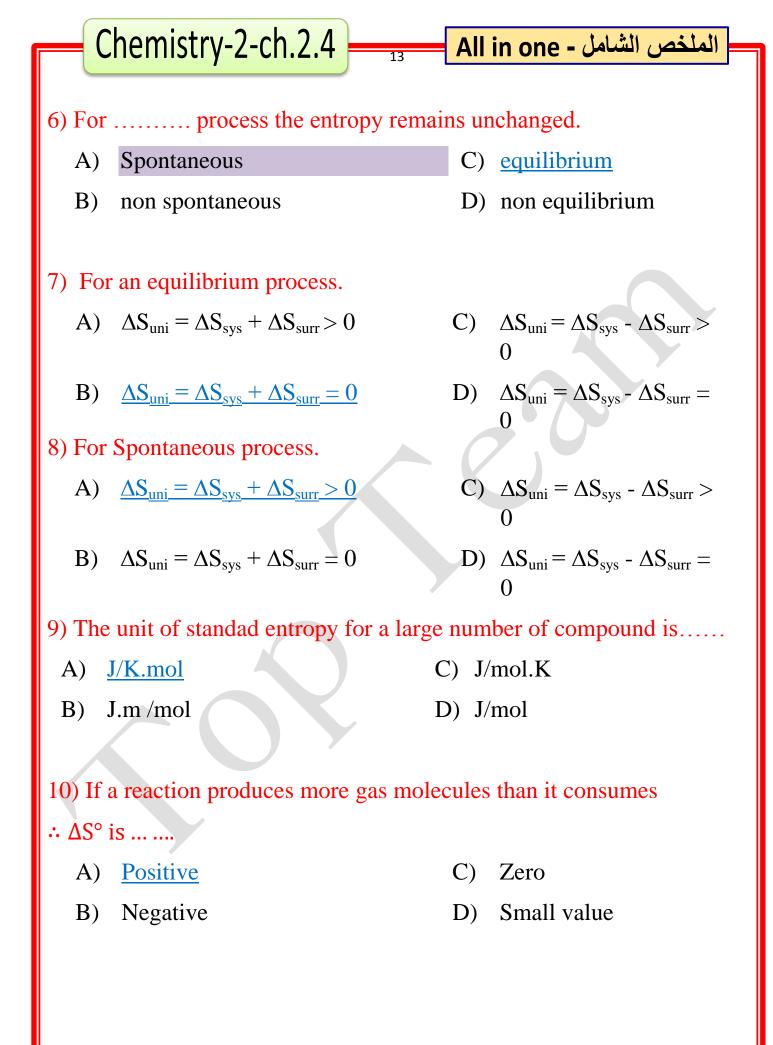
is called the absolute entropy

Why S_f is called absolute entropy?


because this is true value and not a value derived using some arbitrary reference.

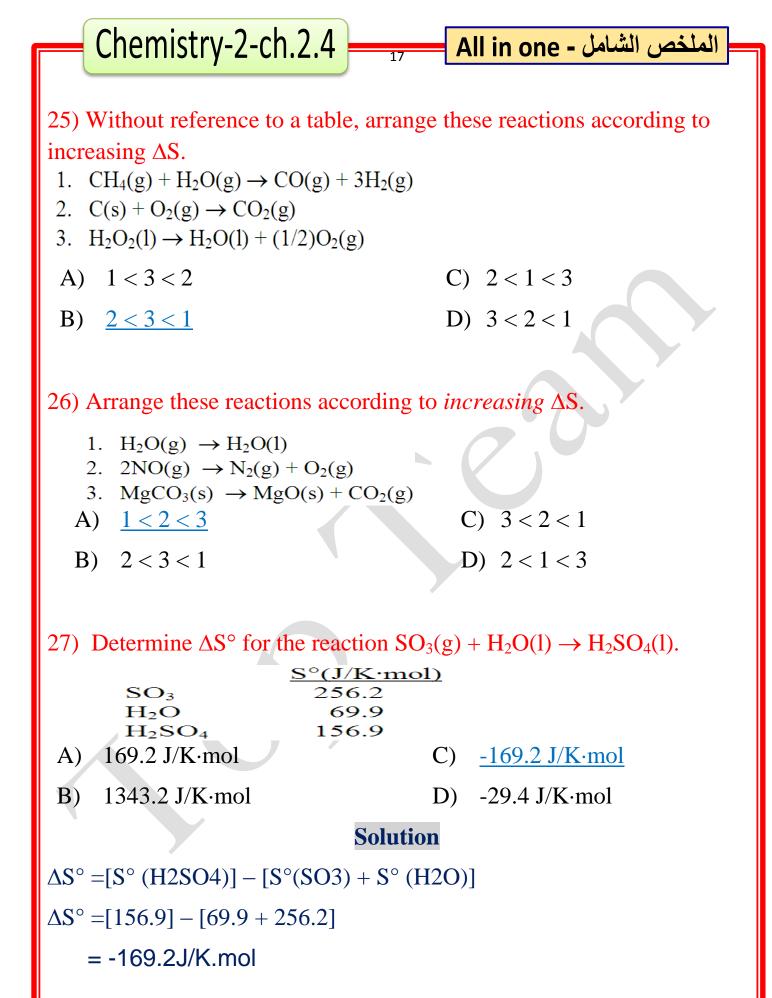
 because measurements are carried out at 1 atm , we usually refer to absolute entropies as standard entropies.

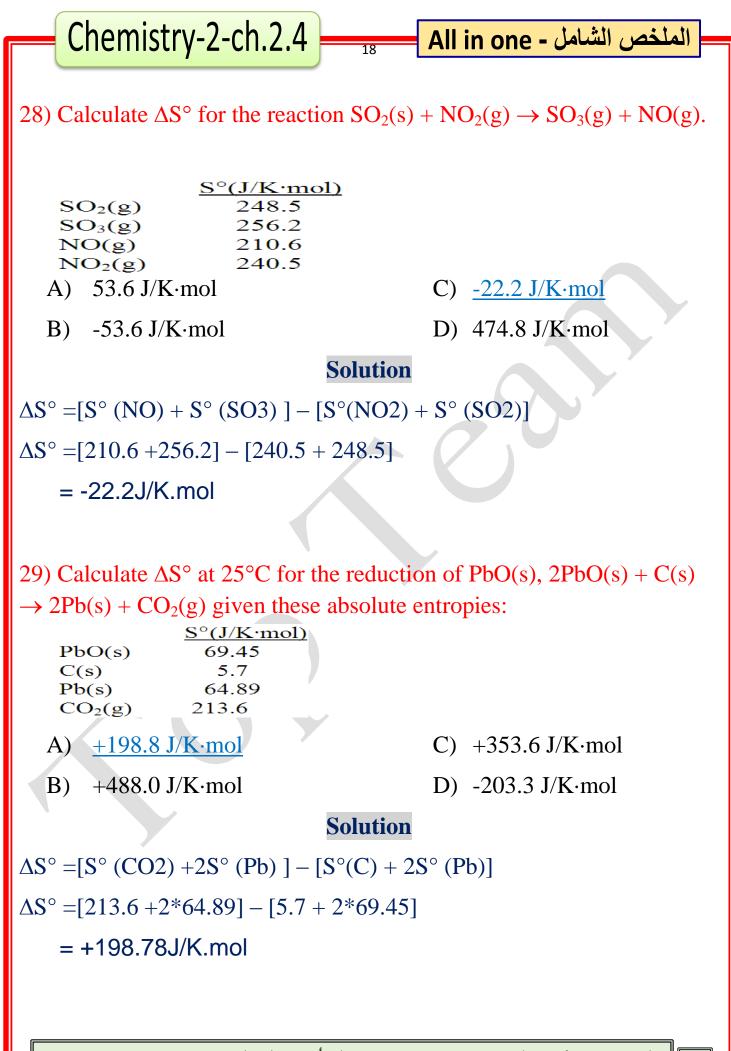
10


we can't have the absolute energy or enthalpy of a substance?.

because the zero of energy or enthalpy is undefined.


- At Absolute zero, it has a zero entropy value.
- As it is heated, its entropy increases gradually because of greater molecular motion
- At the melting point, There is a Sizeable increase in entropy as the liquid state is formed.
- At the boiling point, There is a large increase in entropy as a result of the liquid-to-vapor transition


Chemistry-2-ch.2.4	– A	الملخص الشامل - Il in one		
Choose				
1) The entropy of the universe increase in a spontaneous process and remains unchanged in an equilibrium process this is				
A) First Law of thermodynamics	C)	Third Law of thermodynamics		
B) <u>Second Law of thermodynamics</u>	D)	None of them		
2) The entropy of the universe in a spontaneous process.				
A) <u>increase</u>	C)	not change		
B) decrease	D)	both A and C according to the state.		
3) The entropy of the universe in an equilibrium process.				
A) increase	C	C) <u>not change</u>		
B) decrease	Ľ	both A and C according to the state.		
4) For spontaneous process ΔS_{uni} must be Zero.				
A) greater than	C)	equal		
B) smaller than	D)	all B and C according to the state.		
5) For process ΔS_{uni} must be greater than Zero.				
A) <u>Spontaneous</u>	C	C) equilibrium		
B) nonspontaneous	Γ) non equilibrium		
12 - ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057 -				



Chemistry-2-ch.2.4	الملخص الشامل - All in one		
11) If the total number of gas molecules diminished			
∴ ΔS° is			
A) Positive	C) zero		
B) <u>Negative</u>	D) small value		
12) If there is no net change in $\therefore \Delta S^{\circ}$ is	the total number of gas molecules		
A) Positive	C) zero		
B) Negative	D) both A or B		
13) For this reaction $2H_{2(g)} + O$	$_{2(g)} \rightarrow 2H_2O_{(L)}$. The value of entropy		
A) Increase	C) Not change		
B) <u>Decrease</u>	D) Can't be predicted		
14) For this reaction $NH_4Cl_{(s)} \rightarrow NH_{3(L)} + Hcl_{(g)}$. The value of entropy			
A) <u>positive</u>	C) Not change		
B) Negative	D) Can't be predicted		
ي سؤال-بالواتس 00201095061057	- 14 ملخصات يوسف زويل-Top Team-دعم متواصل لأ		

	hemistry-2-ch.2.4	All in one - الملخص الشامل	
	15 IICIIIISUI y-2-CII.2.4		
15) Foi	this reaction $H_{2(g)} + Br_{2(g)} \rightarrow 2HI$	Br _(g) .The value of entropy	
A)	Positive	C) Not change	
B)	Negative	D) Can't be predicted	
16) In exothermic reaction heat transferred to the			
A)	system	C) universe	
B)	Surrounding	D) all of the above	
17) In A) B)	endothermic reaction there is increase Decrease	in the number of microstate.C) No changeD) None of them	
18) The change in entropy for a given amount of heat absorbed also depends on the			
	<u>Temperature</u>	C) Volume	
B) j	pressure	D) None of them	
19) ΔS°_{rxn} is equal to			
A)	ΔS_{surr}	C) ΔS_{uni}	
B)	ΔS_{sys}	D) ΔH°	
20) ΔS_{surr} is directly proportional to and inversely proportional to			
A) <u>-</u>	ΔH_{sys} ,T	C) T, ΔH_{sys}	
B) -	$\Delta H_{\rm sys}$, P	D) P, - ΔH_{sys}	

