Chemistry-2-ch.2.6

Free energy and chemical equilibrium

* There is a relationship between ΔG and ΔG° which can be derived from thermodynamics.

 $\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RTln} \, \boldsymbol{Q}$

- $R \rightarrow$ gas constant "8.314 J/K.mol"
- $T \rightarrow$ absolute temp of the reaction.
- $Q \rightarrow$ reaction quotient.
 - From this relationship we see that :
 - ΔG depend on ΔG° and RTln Q.
 - For a given reaction at temp T the value of ΔG° is fixed but that of RTln *Q* is not.

ΔG° large positive.

 $\therefore \Delta G \rightarrow$ is also positive.

Net reaction will proceed from right to left.

Until a significant amount of reactant has been formed.

At that points, the RTln Q will become negative enough to match the positive ΔG° in magnitude.

At equilibrium:

 $\Delta G = 0$, $Q = K \rightarrow$ equilibrium constant.

 $\Delta G = \Delta G^{o} + RT \ln Q$

$$\therefore 0 = \Delta G^{\circ} + RT \ln K$$

solution

$$\Delta G^{\circ} = - \operatorname{RTln} K$$

$$K_{c} \qquad K_{p}$$

- This equation relates the equilibrium constant to the standard free energy change " ΔG° " rather than actual free energy change " ΔG ".
- Larger the K, The more negative ΔG° .
- ΔG° is a constant for a particular reaction at a given temperature.
- ΔG varies with the reaction and become zero at equilibrium.

gases

\diamond Three possible relations between ΔG° and K

Relation between DG° and K as Predicted by the Equation $DG = -RT \ln K$

К	In <i>K</i>	ΔG°	Comments
> 1	Positive	Negative	Products are favored over reactants at equilibrium.
= 1	0	0	Products and reactants are equally favored at equilibrium.
< 1	Negative	Positive	Reactants are favored over products at equilibrium.

Chemistry-2-ch.2.6

الملخص الشامل - All in one

Note that

1) Sign of ΔG and not that ΔG° that determine the direction of reaction spontaneity.

2) Sign of ΔG° only tells us the relative amount of product and reactants when equilibrium is reached.

3) Sign of ΔG° don't tells us the direction of the net reaction.

4) If K is very large or very small, It's very difficult to measure the value by monitoring مراقبة the concentrations of all reacting species.

Example 1

The formation of nitric oxide from molecular oxygen and nitrogen at 25°C.

$$N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$$

: The equilibrium constant $K_P = \frac{P^2 NO}{PN2+PO2} = 4 * 10^{-31}$

• The small value of K_p means that the concentration of NO at equilibrium will be Low.

الملخص الشامل - l in one ا

Example 2

Calculate the equilibrium constant K_p for the following reaction at 25°C.

 $2H_2O_{(L)} \ \overrightarrow{\leftarrow} \ 2H_{2(g)} + O_{2(g)}$

 $\Delta G^{\circ} rxn = [2\Delta G^{\circ} F(H2) + \Delta G^{\circ} F(O2)] - [2\Delta G^{\circ} F(H2O)]$ = [2 * 0 + 0] - [2 * -237.2] = 474.4 KJ/mol

 $\Delta G^{\circ} r x n = -RT \ln K p$

474.4 KJ/mol * 1000 = - (8.314 * (25+273) $\ln Kp$)

 $\therefore \ln Kp = -191.5$ $K_p = e^{-191.5} = 7 * 10^{-84}$

Example 3

Using the solubility product of silver chloride at 25°C (1.6×10^{-10}) to calculate ΔG° for the process.

$$AgCl_{(s)} \stackrel{\leftarrow}{\leftarrow} Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

$$Ksp = [Ag^{+}][Cl^{-}] = 1.6 * 10^{-10}$$

$$\Delta G^{\circ} = -RT \ln Ksp$$

$$\Delta G^{\circ} = -8.314 * (25+273) \ln 1.6 * 10^{-10}$$

$$= 5.6 * 10^{4} J/mol$$

$$= 56 \text{ KJ/mol}$$

$$\Delta G = (5.4 * 10^3) + (8.314 * 298) \ln \frac{P^2 NO2}{PN204}$$

$$\Delta G = (5.4 * 10^3) + (8.314 * 298) \ln \frac{(0.122)^2}{(0.453)^2}$$

$$\Delta G = -3.06 * 10^3 J/mol$$

= -3.06 KJ/mol

Because $\Delta G < 0$

_

:The net reaction proceeds from left to right to reach equilibrium.

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057

6

	Chemistry-2-ch.2.6	AI	الملخص الشامل - l in one				
Choose							
1) For the relation ($\Delta G = \Delta G^{\circ} + RT \ln Q$) The value of							
is fixed but that of is not.							
A)	ΔG , RTln Q	C)	$\Delta \mathrm{G}^{\mathrm{o}}$, $\Delta \mathrm{G}$				
B)	<u>∆G°, RTln Q</u>	D)	RTln Q , ΔG^{o}				
2) When ΔG° is large negative, then ΔG is							
A)	positive	C)	zero				
B)	negative	D)	infinity				
3) When ΔG° is large positive, then ΔG is							
A)	positive	C)	zero				
B)	negative	D)	infinity				
4) When ΔG° is large negative, the Net reaction will proceed from							
• • • • • •		\mathbf{C}	1				
A)	Left to right	C)	a or b according to the state				
B)	right to Left	D)	none of them				
	8	,					
5) When ΔG° is large positive, the Net reaction will proceed from							
· · · · · ·	. to		*				
A)	Left to right	C)	a or b according to the				
			state				
B)	right to Left	D)	none of them				
7 - ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057							

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057

8

