

Vapor pressure lowering

If the solute is non-volatile: \rightarrow doesn't have measurable vapor pressure.

 \therefore Vapor pressure of its solution is always less than that of the pure solvent.

Raoult's law

 ✓ It determine the relation between solution vapor pressure and solvent vapor pressure.

$P_1 = X_1 P_1^{\circ}$

 $P_1 \rightarrow$ vapor pressure of solvent over a solution.

 $X_1 \rightarrow$ mole fraction of the solvent.

 $P_1^{\circ} \rightarrow$ vapor pressure of the solvent.

 \checkmark If the solution containing only one solute

 $\therefore X_1 = 1 - X_2$

 $X_2 \rightarrow$ mole fraction of the solute.

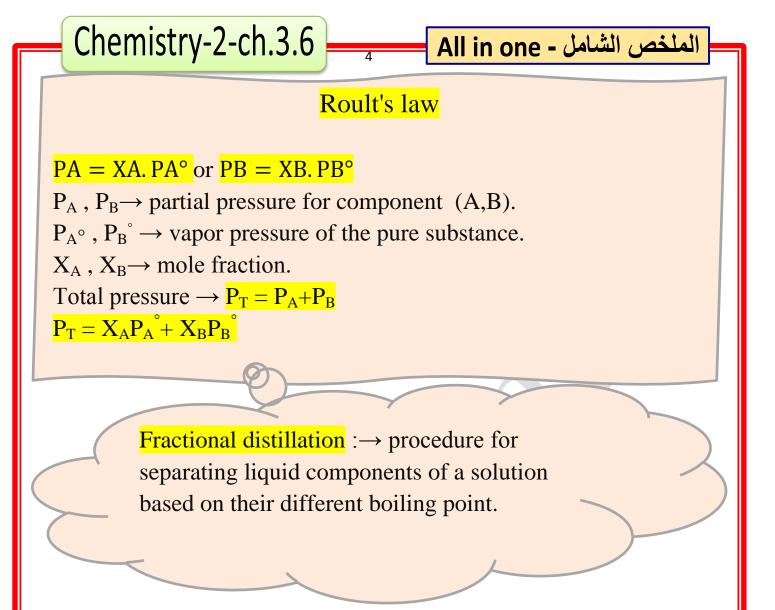
 $P_1 = (1 - X_2) P_1^{\circ}$

 $P_1 = P_1^{\circ} - P_1^{\circ} X_2$

$\therefore \Delta \mathbf{P}_1 = \mathbf{P}_1^{\circ} - \mathbf{P}_1 = \mathbf{P}_1^{\circ} \mathbf{X}_2$

 $\Delta P \rightarrow$ is directly proportional to the solute concentration " mole fraction".

Example


Calculate the vapor pressure of a solution made by dissolving 218 gm of glucose "molar mass 180 gm/mole" in 460 ml of water at 30° C, what is the vapor pressure lowering?! The vapor pressure of pure water at 30° C=31.82 mmHg

Solution

1) no. of moles of glucose $=\frac{mass}{molar mass} = \frac{218}{180.2} = 1.21 mole$ 2) no. of moles of water $=\frac{mass}{molar mass} = \frac{460}{18.02} = 25.5 mole$ Note that \rightarrow ml of water = gm of water 3) mole fraction of water $X_1 = \frac{25.5}{25.5+1.21} = 0.955$ $\therefore P_1 = X_1 P_1^\circ = 0.955 * 31.82 = 30.4 \text{ mmHg}$ \therefore Vapor pressure lowering = 31.82 - 30.4 = 1.3 mmHg.

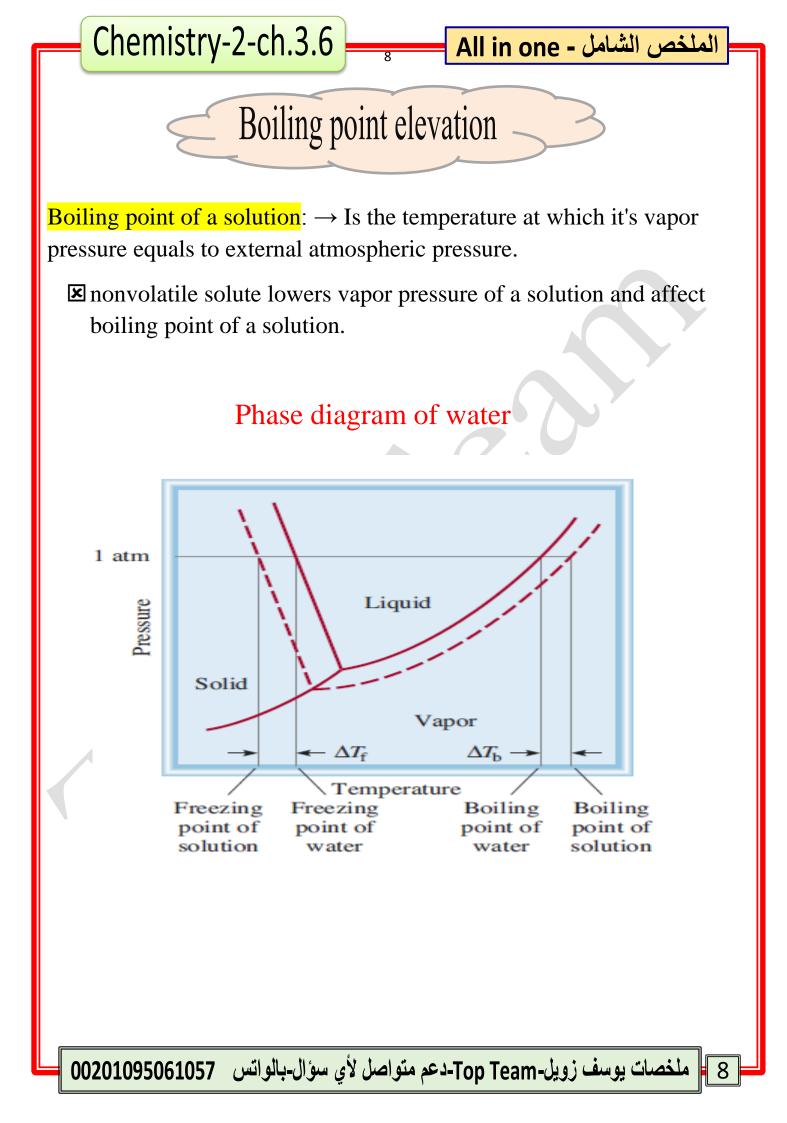
> If both components of a solution are volatile \rightarrow have measurable vapor pressure.

 \therefore The vapor pressure of a solution is the sum of the individual partial pressure.

Example

If we want to separate a binary system say "benzene and toluene".

- Benzene and toluene are relatively volatile.
- Their boiling point are 80.1°C and 110.6°C respectively.
- If we boil a solution containing these two substances, the vapor formed is rich with the more volatile component "benzene".
- If the vapor condense and the liquid is boiled a gain , a still higher concentration of benzene will be obtained in the vapor phase.


ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057

4

(Chemistry-2-ch.3.6	مامل - All in one	الماخص الأ
	5 5		
<u>Cho</u>	ose:		
1) Th	e properties that depend only the	number of solute par	rticles in
the so	lution is		
A)	osmatic pressure	C) freezing point depression	
B)	colligative properties	D) None of them	
r í	e properties that are not depend of les	the nature of the so	lute
A)	osmatic pressure	C) <u>colligative pr</u>	operties 199
B)	freezing point depression	D) None of them	1
3) Co A)	lligative properties deals with relation concentrated		
B)	<u>diluted</u>	C) More concentD) Both A and C	
4) Colligative properties deals with a solution whose concentration equal or less than			
A)	2	C) 0.02	
B)	<u>0.2</u>	D) 2.2	
5) Th	e solute that doesn't have measura	ole vapor pressure is	5
A)	non volatile	C) diluted	
B)	volatile	D) concentrated	
5 - ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057 - 5			

	Chemistry-2-ch.3.6		الملخص الشامل - in one	
	6			
6) If 🛛	The solute is volatile, the vapor p	oressure	e of a solutionthat	
of the	pure solvent.			
A)	equal	C)	less than	
B)	more than	D)	Both A and B	
	determine the relation between th nt vapor pressure.	ne solut	ion vapor pressure and	
A)	Boltzmann equation	C)	Arrhenius equation	
B)	Rault's equation	D)	Avogadro's number	
		• (
8) Th	e Rault's equation is in non-v	volatile	solution.	
A)	$\underline{\mathbf{P}}_{\underline{1}} = \underline{\mathbf{X}}_{\underline{1}} \underline{\mathbf{P}}_{\underline{1}}^{\circ}$	C)	$P_1 = \frac{X1}{P1^\circ}$	
B)	$\mathbf{P}_{1} = \mathbf{X}_{1} \mathbf{P}_{1}$	D)	$X_1 = P_1 P_1^{\circ}$	
9) ΔP	is directly proportional to the			
A)	solute nature	C)	solvent concentration	
B)	solute concentration	D)	solvent nature	
10) ΔP is directly proportional to the solute conc. by				
A)	molarity	C)	mole fraction	
B)	molality	D)	normality	

Chemistry-2-ch.3.6	– الملخص الشامل - All in one			
11) The solution that is have measurable vapor pressure is				
A) concentrated	C) <u>volatile</u>			
B) nonvolatile	D) diluted			
12) The solution that is non-volati the individual vapor pressure	le, the vapor pressure of solution is e.			
A) equal	C) <u>summation</u>			
B) greater than	D) lower than			
13) Procedure uses for separating based on their different boiling po				
A) neutralization	C) <u>fractional distillation</u>			
B) crystallization	D) desalination			
ل لأي سؤال-بالواتس 00201095061057	7 - ملخصات يوسف زويل-Top Team-دعم متواص			

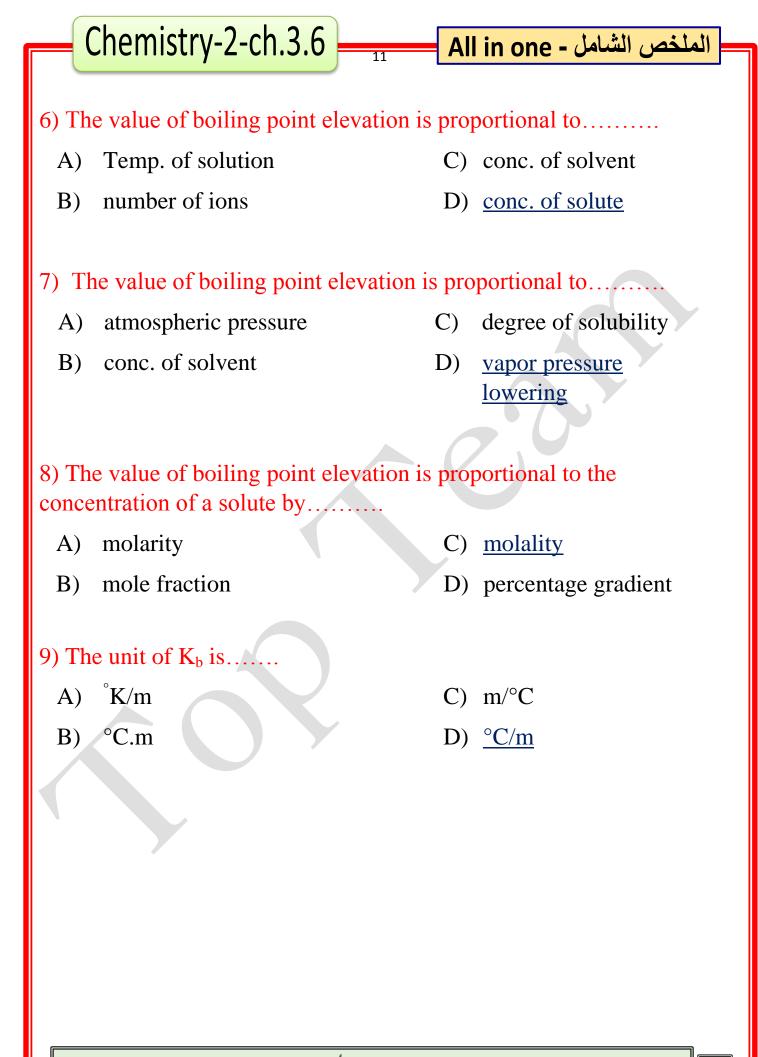
This graphical analysis shows that:

The boiling point of a solution is higher than that of the water.

Boiling point elevation (ΔT_P) : \rightarrow is defined as the boiling point of the solution (T_b) minus the boiling point of the pure solvent (T_b°)

 $\therefore \Delta T_b$ is positive quantity

The value of $\Delta T_b \rightarrow$ is proportional to the vapor pressure lowering and also proportional to the concentration "molality" of the solute.


ΔT_bαm T_b=K_bm

 K_b → molal boiling point elevation constant unit→ °C/m

Why we use concentration by molality?!

Because the temperature is not constant, so we can't express the concentration unit in molarity because molarity change with temperature.

Chemistry-2-ch.3.6	= الملخص الشامل - All in one				
<u>Choose</u>					
1) is the temperature at w solution is equal to the atmospheric					
A) <u>boiling point</u>	C) vaporization point				
B) freezing point	D) atomization point				
2) At the boiling point, the vapor pro-	essure is The atm. pressure.				
A) greater than	C) lower than				
B) <u>equal</u>	D) More than				
3) Nonvolatile solute Vapor p	pressure of a solution.				
A) increase	C) Has no change on				
B) <u>decrease</u>	D) All of the above are true				
4) The equation of boiling point ele	evation is				
A) $\Delta Tb = Tb^{\circ} - Tb$	C) $Tb^{\circ} = \Delta Tb - Tb$				
B) $\Delta Tb = Tb - Tb^{\circ}$	D) $\Delta Tb = Tb + Tb^{\circ}$				
5)is defined as the boiling p	oint of a solution minus the				
boiling point of pure solvent.	$\mathbf{O} = 1 \cdot 1 \cdot 1 \cdot 1$				
A) boiling pointD) 6 i i i i i	C) <u>boiling point elevation</u>				
B) freezing point	D) desalination				

Freezing point depression

- Ice on frozen roads melts when sprinkled with salt such as NaCl.
- E Freezing point depression (ΔT_f) : \rightarrow The freezing point of the pure solvent (T°_f) minus the freezing point of the solution (T_f) .

$$\frac{\Delta T_{f} = T_{f}^{\circ} - T_{f}}{T_{f}^{\circ} > T_{f}}$$

 $\Delta T_{\rm f} \rightarrow \text{positive quantity.}$

 $\Delta T_f \rightarrow$ is proportional to the concentration of the solution.

<mark>ΔT_fαm</mark>

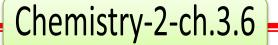
 $m \rightarrow$ conc. in molality.

 $\Delta T_{\rm f} = K_{\rm f} \, m$

 $K_{\rm f}$ unit $\rightarrow {}^{\circ}C/m$

 $K_f \rightarrow$ Molal freezing point depression constant.

Qualitative explanation of freezing point depression


✓ Freezing involves transition from the disorder state to order state.

So the energy must be removed from the system.

✓ Therefore, the solution has a lower freezing point than it's solvent.

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس 00201095061057

12

Note that

- E When a solution freeze, the solid that separates is the pure solvent component.
- In order for boiling point elevation to occur, the solute must be non-volatile.
- but no much restriction applied to the freezing point depression.

Ethylene glycol(OH-CH₂-CH₂-OH) is a common auto mobile antifreeze, it is water soluble and fairly non-volatile (B.p197°C) calculate a freezing point of a solution containing 651gm of Ethylene glycol in 2.505 L of water, the molar mass of Ethylene glycol is 62.07 gm and $K_f = 1.86^{\circ}C/m$.

Solution

 $\Delta T_{\rm f} = m K_{\rm f}$ $m = \frac{no.of \ moles \ of \ solute}{mass \ of \ solvent \ (Kg)}$ no. of moles of solute $=\frac{mass}{molar mass} = \frac{651}{62.07} = 10.5$ mole $m = \frac{10.5}{2.505 Kg} = 4.19m$

 $\Delta T_{\rm f} = 1.86 * 4.19 = 7.79 ° C$

Because of pure water freeze at 0°C the solution will freeze at $0 - 7.79 = -7.79^{\circ}C$

Choose

1) The freezing point of the pure solvent minus the freezing point of the solution is called

14

- A) freezing point depression
- B) freezing point of solvent
- C) salt freezing point
- D) normal freezing point

2) The equation of freezing point depression is.....

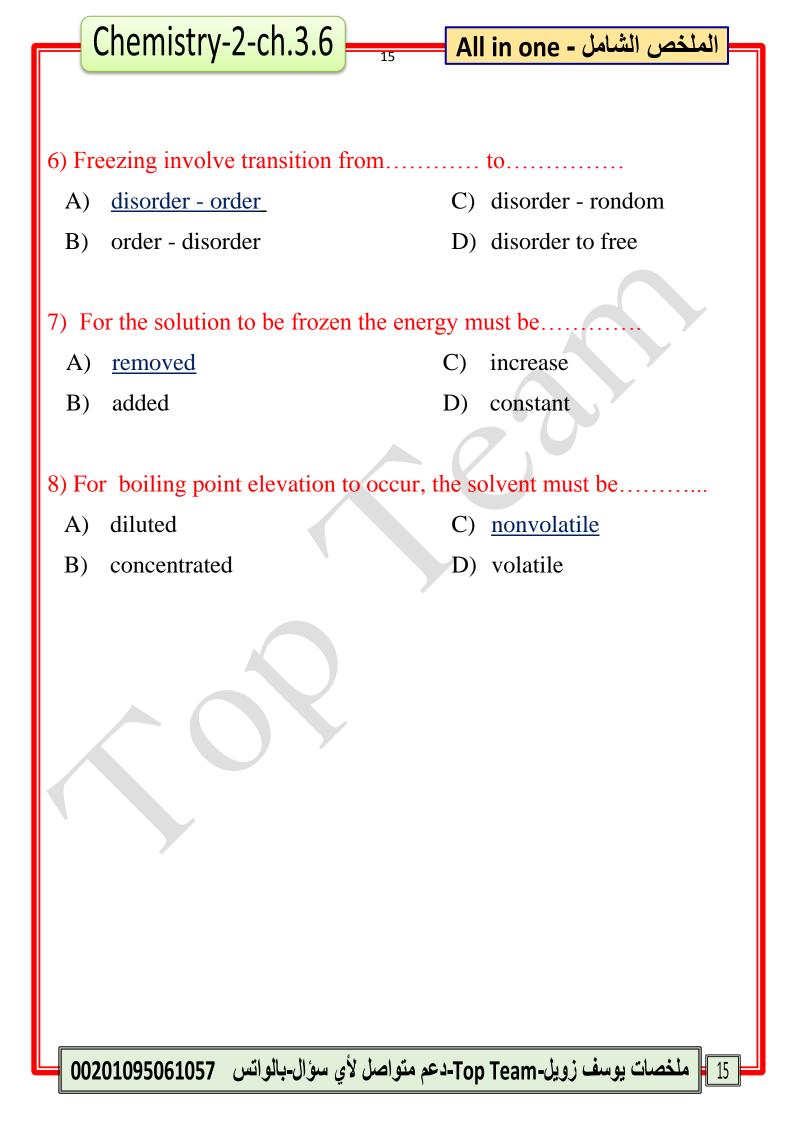
- A) $Tf^{\circ} = \Delta Tf Tf$
- B) $\Delta T f = T f T f^{\circ}$

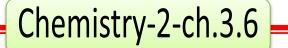
C) $\Delta Tf = Tf^{\circ} - Tf$ D) $\Delta Tf = Tf^{\circ} + Tf$

3) Freezing point depression is proportional to the concentration by.....

- A) molality
- B) normality

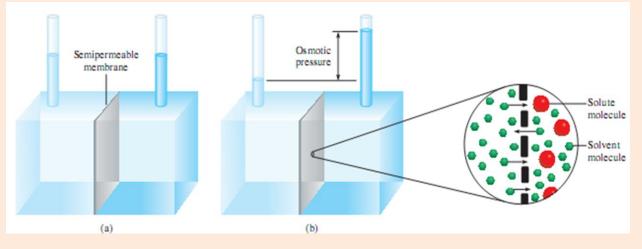
C) mole fraction


D) molarity


- 4) $\Delta T f = \dots$
 - A) $k_b m$
 - <u>K_{f</u><u>m</u></u>} **B**)

- C) $K_{\rm f}/m$
- D) m/K_b

- 5) The unit of K_f is.....
 - A) m/°C
 - m/°K B)


C) °C/m D) °K/m

Osmotic pressure

Osmosis → is a selective passage of solvent molecules through a porous membrane from a dilute solution to a more concentrated one. Semi permeable membrane → allows the passage of solvent molecules but blocks the passage of solute molecules.

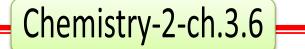
Osmotic pressure(π) \rightarrow is the pressure required to stop osmosis.

- What cause water to move spontaneously from lower concentration to higher?!
- Because the vapor pressure of pure water is higher than the vapor pressure of the solution.

The osmotic pressure is given by:

π=MRT

 $M \rightarrow$ concentration in molarity.


```
R \rightarrow gas constant(0.082 L.Atm/K .mole).
```

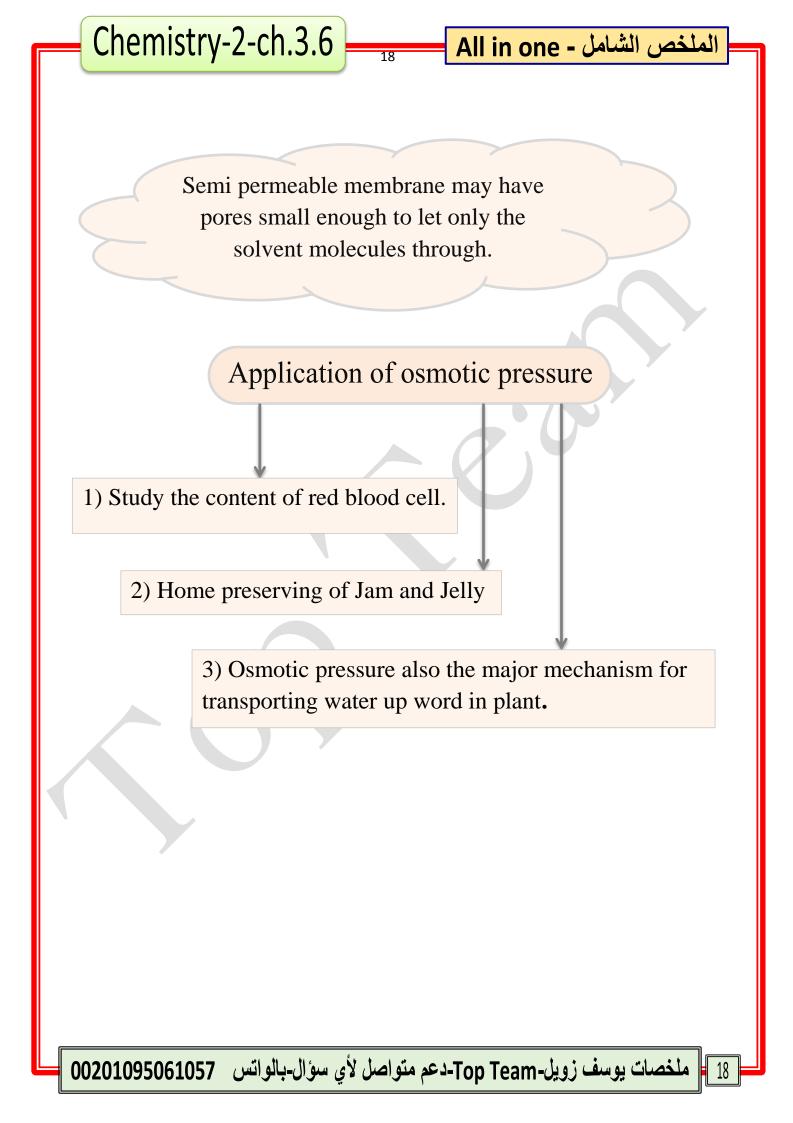
 $T \rightarrow$ absolute temperature "kelvin".

The unit of $\pi \rightarrow \text{Atm.}$

 \clubsuit why we use the concentration by molarity rather than molality?!!

 \checkmark because osmotic pressure carried out at constant temp.

Note that


- Osmotic pressure is directly proportional to the concentration of solution.
- Boiling point elevation is directly proportional to the conc. of solution.
- Freezing point depression is directly proportional to the conc. of solution.
- And this because all colligative properties depend only on the number of solute particles in solution.

What is the mean of isotonic, hypertonic and hypotonic?!

Hypotonic \rightarrow the more diluted solution.

If the two solutions are of unequal osmotic pressure, the more concentrated solution is called \rightarrow hyper- tonic

Isotonic \rightarrow If the two solutions are of equal concentration, so they have the same osmotic pressure.

19

Example

1) The average osmotic pressure of seawater measured by the kind of apparatus is about 30 Atm. at 25° C, calculate the molar conc. of an aqueous solution of sucrose (C₁₂H₂₂O₁₁) that is isotonic with sea water.

Solution

 $\pi = 30 \text{ atm}$ $T = 25 + 273 = 298^{\circ}\text{K}$ $\pi = \text{MRT}$ $M = \frac{\pi}{\text{Rt}} = \frac{30}{0.0821 \times 298} = 1.23\text{M}$

Using colligative properties to determine molar mass

Theoretically \rightarrow any of the four colligative properties is suitable for determine the molar mass.

In practice \rightarrow only freezing point depression and osmotic pressure are used because they show the pronounced changes.

2) A 7.85 gm sample of a compound with the empirical formula C_5H_4 is dissolved in 301 gm of benzene the freezing point of the solution is $1.05^{\circ}C$ below that of pure benzene . What is the molar mass and molecular formula of this compound?! ($K_f=5.12^{\circ}C/m$)

Solution

 $\Delta T_{f}=m K_{f}$ $\therefore m = \frac{\Delta Tf}{Kf} = \frac{1.05}{5.12} = 0.205 \text{ molal}$ $\text{molality} = \frac{no.of \text{ moles of solute}}{volume of \text{ solvent (Kg)}}$ $0.205 = \frac{no.of \text{ moles}}{0.301}$ no. of moles of solute = 0.0617 mole no. of moles of solute = $\frac{mass}{molar \text{ mass}}$ $0.0617 = \frac{7.85}{molar \text{ mass}}$ $0.0617 = \frac{molar \text{ mass}}{molar \text{ mass}} = \frac{127}{64} \approx 2$ Molecular formula = $(C_5H_4)_2 = C_{10}H_8$ "naphthalene"

3) A solution is prepared by dissolving 35 gm of hemoglobin (H_b) in enough water to make up 1 L in volume. If the osmotic pressure of the solution is found to be 10 mmHg at 25°C , calculate the molar mass of $(H_{\rm b})$

Solution

$\pi = MRT$
$M = \frac{\pi}{2}$
$M = \frac{\pi}{RT}$
$M = 0.031/.0821*298$ $= 5.38*10^{-4}$
$= 5.38 \times 10^{-1}$

 $\pi = 10$ mmHg $1atm \rightarrow 760mmHg$ $\pi = 0.031$ atm $?atm \rightarrow 10mmHg$ T=25+273=298°*K* $\therefore \pi = \frac{10}{760} = 0.013 atm$ R = 0.0821(L.atm/K.mole)

 $molarity = \frac{no.\,of\,\,moles\,\,of\,\,solute}{litres\,\,of\,\,solution}$ $5.38*10^{-4} = \frac{no.of\ moles}{10^{-4}}$ \therefore no. of moles = 5.38 * 10⁻⁴ mole mass \therefore no. of moles = molar mass $\therefore 5.38 * 10^{-4} = \frac{35}{\text{molar mass}}$: molar mass of (Hb) = $\frac{35}{5.38 \times 10^{-4}} = 6.51 \times 10^{-4} gm$

Note that:

The freezing point depression is more suitable for determining the molar mass of smaller and more soluble molecules, Those having molar masses of 500 gm or less, because the freezing point depression of their solutions are much greater.

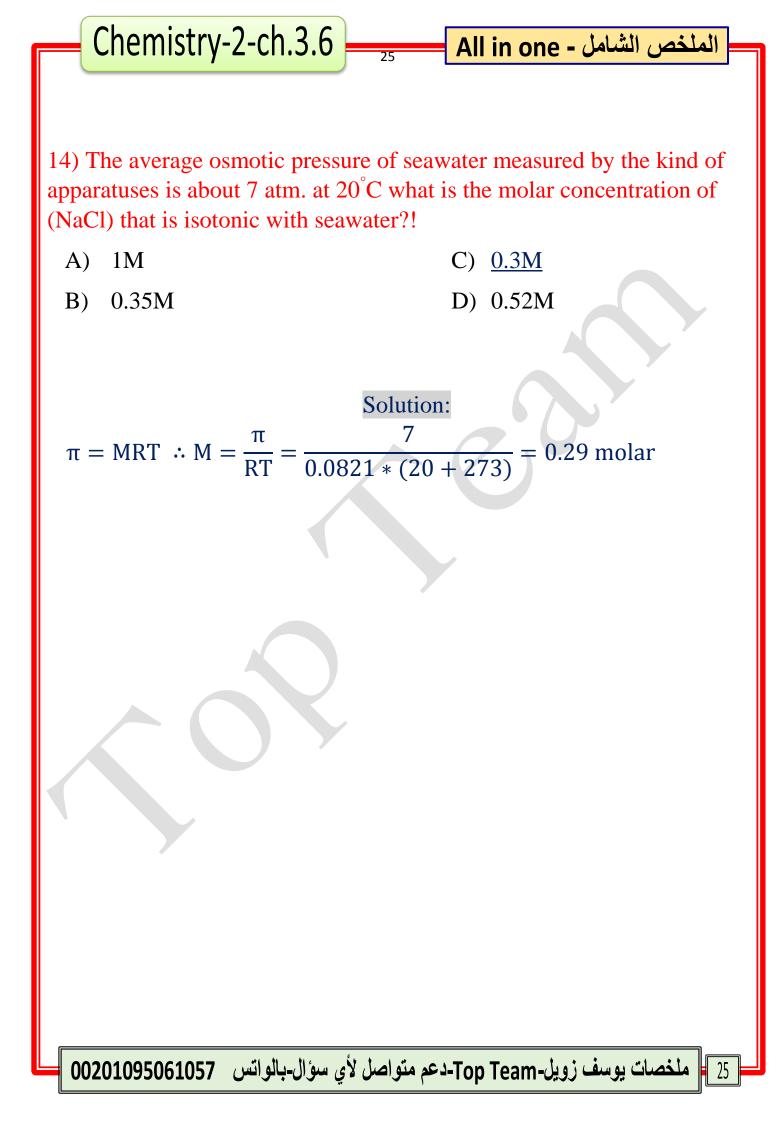
Choose

1)..... is a selective passage of solvent molecules through a porous membrane from a diluted solution to a more concentrated one.

- A) osmosis
- B) osmotic pressure

- C) vapor pressure
- D) solvation
- 2) Osmosis is a selective passage of solvent from to
 - A) concentrated-diluted

C) concentrated-very concentrated


B) diluted-very dilute D) diluted-more concentrated

3) allow the passage of solvent molecules but block the passage of solute.

- A) permeable membrane C) semi permeable membrane open membrane B)
 - closed membrane D)

Chemistry-2-ch.3.6	الملخص الشامل - All in one
4) Semi permeable membrane blo	cks the passage ofmolecules.
A) Solvent	C) Solution
B) <u>Solute</u>	D) Both A and B
D) <u>Bolate</u>	D) Dott I und D
5) Semi permeable membrane allo	ws the passage of molecules.
A) solute	C) <u>solvent</u>
B) solution	D) Both A and B
6) is the pressure required	to stop osmosis.
A) <u>osmotic pressure</u>	C) total osmotic pressure
B) partial pressure	D) vapor pressure
7) The osmotic pressure is given b	y
A) $\pi = nRT$	C) $\pi = MPT$
B) $\pi = pkT$	D) $\pi = MRT$
8) The unit of osmotic pressure π	=
A) Cm Hg	C) <u>Atm.</u>
B) Pascal	D) Torr
9) In the following equation $\pi = M$	RT, The "M" is concentration
by	
A) <u>molarity</u>	C) normality
B) molality	D) mole fraction
مل لأي سؤال-بالواتس 00201095061057	23 - ملخصات يوسف زويل-Top Team-دعم متواص

Chemistry-2-ch.3.6	All in one - الملخص الشامل			
10) Osmotic pressure, boiling point elevation and freezing point				
depression is directly proportional to				
A) number of solute	C) liters of solvent			
B) grams of solute	D) <u>conc. of solution</u>			
11) When the two solutions are of e	qual concentration this is			
called				
A) hypertonic	C) hypotonic			
B) <u>isotonic</u>	D) Both A and B			
12) If the two solutions are of unequal osmotic pressure, the more concentrated solution is called				
A) isotonic	C) hypotonic			
B) <u>hypertonic</u>	D) Both A and B			
13) If the two solutions are of unequality diluted solution is called	ual osmotic pressure, the more			
A) isotonic	C) <u>hypotonic</u>			
B) hyper tonic	D) Both A and B			
صل لأي سؤال-بالواتس 00201095061057	24 - ملخصات يوسف زويل-Top Team-دعم متوا			

