

2

How the rate of a reaction is obtained experimentally?

To determine the rate of a reaction we have to monitor the concentration of the reactant or product as a function of time.

There are three cases to monitor the concentration

For reactions in solution

The concentration can often be measured by spectroscopic means.

Reactions involving ions

The concentration can also be detected by electrical conductance measurement.

Reactions involving gases

The concentration can be measured by pressure measurements.

الملخص الشامل - All in one

Two specific reactions for which different methods are used to measure the reaction rates.

(1)Reaction of molecular bromine and formic acid.

 $Br_2 + HCOOH \rightarrow 2Br_{(aq)} + 2H_{(aq)} + CO_{2(g)}$

Note that

- Br₂ is reddish brown in color
- All of the other species in the reaction colorless.
- As the reaction progresses, the concentration of Br₂ steadily decreases and its color fades.

This loss of color and hence concentration can be monitored by spectrometer.

 t_3

Absorption

 $\frac{300 \quad 400 \quad 500}{\text{Wavelength (nm)}} \quad 600}$ Figure show: Plot of absorption of bromine versus wavelength. The maximum absorption of visible light by bromine occurs at 393 nm. As the reaction progresses (t₁ to t₃), the absorption, which is proportional to [Br₂], decreases.

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

4

Measuring the decrease in bromine concentration at same initial time and then at same final time enables us to determine the average rate of the reaction.

الملخص الشامل - All in one

Average rate = $\frac{-\Delta[Br_2]}{\Delta t} = \frac{-[Br_2]final - [Br]2 intial}{tfinal - tinitial}$

• Using the data provided in this table we can calculate the average rate over the first 50-S time interval as follows:

Time (s)	[Br ₂] (M)	Rate (M/s)	$k = \frac{\text{rate}}{[\text{Br}_2]} \text{ (s}^{-1}\text{)}$
0.0	0.0120	4.20×10^{-5}	3.50×10^{-3}
50.0	0.0101	3.52×10^{-5}	3.49×10^{-3}
100.0	0.00846	2.96×10^{-5}	3.50×10^{-3}
150.0	0.00710	2.49×10^{-5}	3.51×10^{-3}
200.0	0.00596	2.09×10^{-5}	3.51×10^{-3}
250.0	0.00500	1.75×10^{-5}	3.50×10^{-3}
300.0	0.00420	1.48×10^{-5}	3.52×10^{-3}
350.0	0.00353	1.23×10^{-5}	3.48×10^{-3}
400.0	0.00296	1.04×10^{-5}	3.51×10^{-3}

Average rate = $\frac{-[Br_2]f - [Br_2]i}{tfinal - tinitial} = \frac{-[0.0101 - 0.0120]}{50 s} M = 3.8 \times 10^{-5} M/s$

• If we had chosen the first 100 S as our time interval.

Average rate = $\frac{-[0.00846 - 0.0120]}{100s}M = 3.54 * 10^{-5} M/S$

- The average rate of the reaction depends on the time interval we choose.
- This figure show plots of $[Br_2]$ versus time based

Note that

- Graphically, the instantaneous rate at 100 S after the start of the reaction is given by the slope of the tangent to the curve at that instant.
- The instantaneous rate at any other time can be determined in a similar manner.
- The instantaneous rate determined in this way will always have the same value for the same concentration of reactants, as long as the temperature is kept constant.
- Rate of the bromine- formic acid reaction also depend on the concentration of formic acid, however, by adding a large excess of formic acid to reaction mixture, concentration of formic acid remains constant.
- Under this condition the change in the amount of formic acid present in solution has no effect on the measured rate.

0.00600

 $[Br_2](M)$

0.0100

0.0140

0

0.00200

Note that

- The fact that this graph is a straight line shows that the rate is directly proportional to the concentration.
- The higher the concentration, the higher the rate.

From the last equation

 $K = rate / [Br_2]$

The unit of rate \rightarrow M/S the unit of K = $\frac{M}{S*M}$ = 1/S or S⁻¹

The unit of $[Br_2] \rightarrow M$

Note that

- K is constant for every reaction and not affected by the concentration of [Br₂] but depends on temperature.
- The rate is greater at a higher concentration and smaller at a lower concentration of [Br₂].

(2) Decomposition of hydrogen peroxide

- If one of the products or reactants is a gas, we can use a manometer to find the reaction rate.
- Consider the decomposition of hydrogen peroxide at 20°C.

 $2\mathrm{H}_{2}\mathrm{O}_{2\,(\mathrm{aq})} \rightarrow 2\mathrm{H}_{2}\mathrm{O}_{(\mathrm{L})} + \mathrm{O}_{2(\mathrm{g})}$

- The rate of decomposition can be determined by monitoring the rate of oxygen evolution with a manometer.
- The oxygen pressure can be readily converted to concentration.

Figure show: The instantaneous rate for the decomposition of hydrogen peroxide at 400 min is given by the slope of the tangent multiplied by 1/RT. The reaction rate " rate of oxygen production"

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

9

Reaction rates and stoichiometry

For stoichiometrically simple reaction of the type $A \rightarrow B$

- The rate can be expressed as → the decrease in reactant concentration with time ^{-Δ[A]}/_{A+}.
- The increase in product concentration with time = $\frac{\Delta[B]}{\Delta t}$.
- For more complex reactions: →we must be careful in writing the rate expression.

Consider, for example

<mark>2A→B</mark>

Two moles of (A) disappear for each mole of (B) that forms.

<mark>That is</mark>

The rate at which (B) forms is one-half the rate at which (A) disappears.

$$\frac{\text{Rate} = -\frac{1}{2} \left(\frac{\Delta[A]}{\Delta t}\right)}{\text{or}} \quad \text{or} \quad \frac{\text{rate} \frac{\Delta[B]}{\Delta t}}{\Delta t}$$

In general, for the reaction

$$aA+bB \rightarrow cC + dD$$

The rate is given by $= \left(\frac{-1}{a}\right) \left(\frac{\Delta A}{\Delta t}\right) = \left(\frac{-1}{b}\right) \left(\frac{\Delta B}{\Delta t}\right) = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$

Example

Write the rate expressions for the following reactions in terms of the disappearance of the reactants and the appearance of the products: (a) $I_{2(aq)} + OCl_{2(aq)} = Cl_{2(aq)} + OI_{2(aq)}$

(a) $I_{2(aq)} + OCI_{2(aq)} - CI_{2(aq)} + OI_{2(aq)}$ (b) $4NH_{3(g)} + 5O_{2(g)} = 4NO_{(g)} + 6H_2O_{(g)}$

Solution

(a) Because each of the stoichiometric coefficients equals 1,

Rate = -	$\Delta[I^-]$	Δ[OCl ⁻]	$\Delta[Cl^-]$	_ Δ[OI ⁻]
	Δt		Δt	Δt

(b) Here the coefficients are 4, 5, 4, and 6, so

$$\operatorname{Rate} = -\frac{1}{4} \frac{\Delta[\mathrm{NH}_3]}{\Delta t} = -\frac{1}{5} \frac{\Delta[\mathrm{O}_2]}{\Delta t} = \frac{1}{4} \frac{\Delta[\mathrm{NO}]}{\Delta t} = \frac{1}{6} \frac{\Delta[\mathrm{NO}]}{\Delta t} = \frac{1}$$

	hemistry-2-ch.4.1	13 AI	الملخص الشامل - in one		
5) Fo	5) For the reaction " $X \rightarrow Y$ " we can express the rate as				
A)	dy	C)	-dx		
	dt		dt		
B)	$\frac{-dy}{dt}$	D)	Both A and C		
	dt				
6) Th	e unit of rate is				
A)	<u>M/S</u>	C)	M.S		
B)	L/S	D)	none of them		
7) Tł	7) The energy available because of the motion of an object is				
A)	Kinetic energy	C)	solar energy		
B)	Potential energy	D)	Heat capacity		
8) Ra	te of reaction is Qua	antity.			
A)	positive	B)	negative		
9) The units of "reaction rate" are					
A)	$L \text{ mol}^{-1} \text{ s}^{-1}$	C)	$\underline{\mathrm{mol}\ \mathrm{L}^{-1}\ \mathrm{s}^{-1}}.$		
B)	$L^2 \text{ mol}^{-2} \text{ s}^{-1}$.		s ⁻² .		
, ,		,			

10) For the reaction $BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$ at a particular time, $-\Delta[BrO_3^-]/\Delta t = 1.5 \times 10^{-2}$ M/s. What is $-\Delta[Br^-]/\Delta t$ at the same instant?

14

- A) 13 M/s C) 1.5×10^{-2} M/s
- B) $7.5 \times 10^{-2} \text{ M/s}$

D) 3.0×10^{-3} M/s

11) For the following reaction, $\Delta P (C_6 H_{14})/\Delta t$ was found to be -6.2 × 10⁻³ atm/s.

 $C_6H_{14}(g) \rightarrow C_6H_6(g) + 4H_2(g)$ Determine $\Delta P(H_2)/\Delta t$ for this reaction at the same time.

A) 6.2×10^{-3} atm/sC) 2.5×10^{-2} atm/sB) 1.6×10^{-3} atm/sD) -1.6×10^{-3} atm/s

12) For the reaction $C_6H_{14}(g) \rightarrow C_6H_6(g) + 4H_2(g)$, $\Delta P(H_2)/\Delta t$ was found to be 2.5 × 10⁻² atm/s, where $\Delta P(H_2)$ is the change in pressure of hydrogen. Determine $\Delta P(C_6H_{14})/\Delta t$ for this reaction at the same time.

A) 2.5×10^{-2} atm/s

C) -2.5×10^{-2} atm/s

B) <u>-6.2 × 10⁻³ atm/s</u>

D) 0.10 atm/s