Chemistry-2-ch.4.3 –

The relation between reactant concentration and time

First order reaction: \rightarrow is a reaction whose rate depends on the reactants concentration raised to the first power.

In a first order reaction of the type

 $A \rightarrow \text{product}$

The rate = $\frac{\Delta[A]}{\Delta t}$

from the rate Law rate = K[A]

Units of K:-

$$\mathbf{K} = \frac{rate}{[A]} = \frac{M/S}{M} = 1/S \text{ or } \mathbf{S}^{-1}$$

Combining the first two equations for the rate.

$$\frac{-\Delta[A]}{\Delta t} = K[A]$$

 $\frac{ln\frac{[A]t}{[A]0}}{ln} = -Kt \qquad [A]t:$ Is the concentration of A at any time"t".

 $[A]_0$: Is the concentration of A at time "t" = 0

The above equation can be rearranged as follows:

 $ln[A]_t = -Kt + ln[A]_0$ $[A]t = [A]_0 e^{-kt}$

Chemistry-2-ch.4.3 -

 CH_2

Example

The conversion of cyclopropane to propene in the gas phase is a first-order reaction with a rate constant of $6.7 \times 10^{-4} \text{ s}^{-1}$ at 500°C.

$$CH_2 \longrightarrow CH_3 \longrightarrow CH_2 CH_2$$

(a) If the initial concentration of cyclopropane was 0.25 *M*, what is the concentration after 8.8 min?(b) How long (in minutes) will it take for the concentration of

cyclopropane to decrease from 0.25 M to 0.15 M?

(c) How long (in minutes) will it take to convert 74 percent of the starting material?

Solution

(a) In applying Equation, we note that because *k* is given in units of s⁻¹, we must first convert 8.8 min to seconds: 8.8min * 60 s = 528 s We write: $ln[A]_t = -Kt + ln[A]_0$ $= -(6.7*10^{-4} s^{-1}) (528 s) + ln (0.25)$ = -1.74 $[A]_t = e^{-1.74} = 0.18 M$ (b) Using Equation $ln \frac{0.15M}{0.25M} = -(6.7*10^{-4} s^{-1})t$ $T = 7.6*10^2 s*1min / 60 s$ = 13min(c) From Equation

 $ln \frac{0.26M}{1.00M} = -(6.7*10^{-4} \text{ s}^{-1})\text{t}$ t = 2.0 *10³ s * 1 min/60 s = 33min

Chemistry-2-ch.4.3

Determination graphically the order and rate constant of the decomposition of nitrogen pentoxide in carbon tetrachloride (CCl₄) solvent at 49°C.

 $2N_2O_5 \rightarrow 4NO_{2(g)} + O_{2(g)}$

• The following table shows the variation of N_2O_5 concentration with time, and the corresponding lnN_2O_5

alues.	<i>t</i> (s)	$[N_2O_5](M)$	In [N ₂ O ₅]
	0	0.91	-0.094
	300	0.75	-0.29
	600	0.64	-0.45
	1200	0.44	-0.82
	3000	0.16	-1.83

- We plot lnN_2O_5 versus t, the fact that the points lie on a straight line shows that the rate law is first order.
- We determine the rate constant from the slop.

• Slope
$$= \frac{\Delta y}{\Delta t} = \frac{-1.5 - (-0.34)}{(2430 - 400)S} = -5.7 * 10^{-4} S^{-1}$$

• Slope = -K

• $K = 5.7 * 10^{-4} S^{-1}$

لمخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

الملخص الشامل - All in one

Example

The reaction $(2A \rightarrow B)$ is first order in A with a rate constant of 2.8 * 10^{-2} S⁻¹ at 80°C. How long will it take for A to decrease from 0.88M to 0.14M?

Solution

$$\ln[A]t = -Kt + \ln[A]_0$$

$$[A]_0 = 0.88M$$

$$[A]t = 0.14M$$

 $Kt = \ln[A]_0 - \ln[A]t$

 $t = \frac{\ln[A]_0 - \ln[A]t}{K} = \frac{\ln\frac{[A]_0}{[A]t}}{K} = \frac{\ln\frac{0.88}{0.14}}{2.8 \times 10^{-2} S^{-1}} = 66 S$

Reaction half-life

The half-life $t_{1/2}$ \rightarrow is the time required for the concentration of a reactant to decrease to half of its initial concentration. The expression of $t_{1/2}$:

 $t_{1/2} = \frac{1}{\kappa} ln2 = \frac{0.693}{\kappa}$

When
$$t = t_{1/2}$$
, $[A]_t = \frac{[A]_0}{2}$

$$t_{1/2} = \frac{1}{K} ln \frac{[A]_0}{\frac{[A]_0}{2}}$$

The half-life of a first- order reaction is independent on the initial concentration of the reactant.

Measuring the half-life of a reaction is one way to determine the rate constant of a first-order reaction.

	الملخص الشامل - All in one Chemistry-2-ch.4.3			
	Second order reaction			
	Second-order reaction			
Second-order reaction: → is a reaction whose rate depends on the concentration of one reactant raised to the second power. : → is a reaction whose rate depends on the concentrations of two different reactants each raised to the first				
The simpler type involves only one kind of reactant molecule $A \rightarrow product$				
F	$\operatorname{Rate} = \frac{-\Delta[A]}{\Delta t}$ rate law = $K[A]^2$			
τ	Unites of K:- $K = Rate/[A]^2 = \frac{M/S}{M^2} = \frac{1}{S.M} = M^{-1}S^{-1}$			
A	Another type of second-order reaction:			
	$A+B \rightarrow product$			
T	The rate Law : $Rate = K[A][B]$			
The reaction is first order in A and first order in B, So it has a second order overall reaction.				
[/	The above equation can be rearranged as follow: $\frac{1}{A]_t} = Kt + \frac{1}{[A]_0}$ [A]t = concentration of A at any time t.			
	$[A]_0 = $ concentration of A at time t = 0.			

Chemistry-2-ch.4.3

الملخص الشامل - All in one

Note that

- The half-life of a second order reaction is inversely proportional to the initial reactant concentration.
- Measuring the half-life at different initial concentrations is one way to distinguish between the first order and a second order reaction.

Chemistry-2-ch.4.3 –

الملخص الشامل - All in one

Example

Iodine atoms combine to form molecular iodine in the gas phase.

 $\mathbf{I}_{(g)} + \mathbf{I}_{(g)} \rightarrow \mathbf{I}_{2(g)}$

This reaction follows second-order kinetics and has the high rate constant 7.0 * $10^{9}/M$. s at 23°C.

(a) If the initial concentration of I was 0.086 M, calculate the concentration after 2.0 min.

(b) Calculate the half-life of the reaction if the initial concentration of I is 0.60 M and if it is 0.42 M.

Solution

(a) Applying Equation: $\frac{\frac{1}{[A]_t} = Kt + \frac{1}{[A]_0}}{\frac{1}{[A]_t} = (7.0 * 10^9)(2.0 * 60) + \frac{1}{0.086M}}$

Where $[A]_t$ is the concentration at t = 2.0 min.

Solving the equation, we get

 $[A]_t = 1.2*10^{-12}M$

(b) For
$$[I]_0 = 0.60 M$$

 $t_{1/2} = \frac{1}{k[A]_0} = \frac{1}{(7.0*10^9 / M.s)(0.60M)}$
 $= 2.4*10^{-10}$ S

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

	Chemistry-2-ch.4.3		الملخص الشامل - Lin one	
<u>Choose</u>				
1) conce	is a reaction whose rate deperturbed on the first power.	nds o	on the reactants	
A)	Second order	C)	Third order	
B)	first order	D)	zero order	
2) Th	e unit of K in the first order reaction	on is.		
A)	$M^{-1}.S^{-1}$	C)	M/S	
B)	S ⁻¹	D)	None of them	
3) decre	 3) is the time required for the concentration of a reactant to decrease to half of its initial concentration. 			
A)	Full time	C)	Half life time	
B)	part time	D)	None of them	
4) $ln \frac{[A]_t}{[A]_0} = -kt$, this is the equation of				
A)	first order reaction	C)	second order reaction	
B)	zero order reaction	D)	third order reaction	
5) The expression of $t_{1/2}$ for the first order reaction is				
A)	$t_{1/2} = \frac{1}{K[A]^0}$	C)	$\underline{\mathbf{t}_{1/2}} = \frac{\ln 2}{K}$	
B)	$t_{1/2} = \frac{[A]^0}{2K}$	D)	None of them	

Chemistry-2-ch.4.3

6) What is the half-life of N_2O_5 , If it decomposes with a rate constant of 9.5*10⁻³ S⁻¹?!

- A) 7*10⁵ C) $3.5*10^{-5}$
- B) $7.3*10^{-5}$ D) 3.5*10⁻³

Solution

 $t_{1/2} = \frac{\ln 2}{\kappa} = \frac{\ln 2}{9.5 \times 10^{-3}} = 7.29 \times 10^{-5} S$

7) is a reaction whose rate depends on the concentration of one reactant raised to the second power.

- A) first order reaction C) zero order reaction
- B) second order reaction D) third order reaction

8) is the concentrations of two different reactants each raised to first power.

- A) first order reaction
- B) second order reaction
- C) zero order reaction
- D) third order reaction

9) The unit of K in the second order reaction is.....

- A) S^{-1} C) Mole/S
- B) $M^{-1}S^{-1}$ D) None of them

All in one - الملخص الشامل

 All in one - الملخص الشامل

 17

 All in one - الملخص الشامل

 10) Equation for the half-life of a second order reaction is

 A)

$$t_{1/2} = \frac{\ln 2}{K}$$
 C)
 $t_{1/2} = \frac{A}{K}$

 B)
 $t_{1/2} = \frac{\ln 2}{K}$
 D) None of them

 11) At 25°C the rate constant for the first order decomposition of a pesticide solution is $6.4*10^3 \text{ min}^4$, if the starting concentration of pesticide is $0.0314M$ what concentration remain after 62min at 25°C?!

 A)
 $1.14*10^{-1}M$
 C)
 $2.11*10^{-2}M$

 B)
 $47.4M$
 D)
 $2.68*10^{-2}M$

 Bolution

 $A_t = A^0 e^{-kt} = 0.0314e^{-(6.4*10^{-3}*62)} = 2.11*10^{-2}M$

 12) A certain first order reaction $(A \rightarrow B)$ is 25% complete in 42 min at 25°C. what is the half-life of the reaction?!

 A)
 21 min
 C)
 120 min

 B)
 42 min
 D)
 101 min

 Solution

 In $\frac{A_t}{A_0} = -Kt$
 In $\frac{75}{100} = -K*42$

 × K = 6.8 * 10^{-3} min

 $t_{\frac{1}{2}} = \frac{ln2}{K}$
 00201095061057 - vi(U+U(vi) Vi) vi (Vi) vi (Vi) vi (U-U) Vi)

Γ

Chemistry-2-ch.4.3

 18
 All in one - Julia

 Interpret the section of the section is a rate constant of
$$3*10^{-3}S^{-1}$$
, the time required for the reaction has a rate constant of $3*10^{-3}S^{-1}$, the time required for the reaction to be 75% complete is......

 A)
 95.8 S
 C)
 201 S

 B)
 462 S
 D)
 41.75 S

 Solution

 $\ln \frac{A_t}{A_0} = -Kt$
 $\ln \frac{25}{100} = -3 * 10^{-3} * t$
 $\therefore t = 462 S$

 14) A certain first order reaction A→B is 25% complete in 42 min at 25°C, what is its rate constant?

 A)
 $6.8*10^{-3} \min^{-1}$
 C)
 $3.3*10^{-2} \min^{-1}$

 B)
 $8.3*10^{-3} \min^{-1}$
 D)
 11 min⁻¹

 B)
 $8.3*10^{-3} \min^{-1}$
 D)
 11 min⁻¹

 Solution

 $\ln \frac{A_t}{A_0} = -Kt$
 $\ln \frac{75}{100} = -K * 42$
 $K = 6.8*10^{-3} min^{-1}$

15) The isomerization of cyclopropane to form propene

$$\begin{array}{c} H_2C \longrightarrow CH_2 \\ & \swarrow / & \longrightarrow CH_3 \longrightarrow CH_2 \\ CH_2 \end{array}$$

is a first-order reaction. At 760 K, 15% of a sample of cyclopropane changes to propene in 6.8 min. What is the half-life of cyclopropane at 760 K?

A)
$$3.4 \times 10^{-2} \text{ min}$$

B) 2.5 min
C) 23 min
D) 29 min
Solution
 $\ln \frac{A_t}{A_0} = -Kt$
 $\ln \frac{85}{100} = -K * 6.8$
 $K = 23.8 * 10^{-3} \text{min}^{-1}$
 $t_{1/2} = \frac{\ln 2}{k} = \frac{\ln 2}{23.8 * 10^{-3}} = 29 \text{ min}$

الملخص الشامل - All in one

17) The isomerization of cyclopropane to propene follows first-order kinetics. At 700 K, the rate constant for this reaction is 6.2×10^{-4} min⁻¹. How many minutes are required for 10.0% of a sample of cyclopropane to isomerize to propene?

 $H_2C - CH_2$ $\langle / \rightarrow CH_3 - CH = CH_2$ СН C) 1,120 min A) 16,100 min D) 1.43×10^{-3} min <u>170 min</u> B) **Solution** $\ln \frac{A_t}{A_0} = -Kt$

 $\ln\frac{90}{100} = -t * 6.2 * 10^{-4}$ t= 169.6 = 170 min

18) At 700 K, the rate constant for the following reaction is 6.2×10^{-4} min⁻¹. How many minutes are required for 20% of a sample of cyclopropane to isomerize to propene?

 C_3H_6 (cyclopropane) $\rightarrow C_3H_6$ (propene) A) 1,120 min C) 360 min B) 3710 min D) 280 min

Solution

 $\ln \frac{A_t}{A_0} = -Kt$ $\ln \frac{80}{100} = -t * 6.2 * 10^{-4}$ $t = 359.5 = 360 \min$

Chemistry-2-ch.4.3 =

الملخص الشامل - All in one

19) A first-order reaction has a rate constant of 7.5×10^{-3} /s. The time required for the reaction to be 60% complete is

A) 3.8×10^{-3} s B) 6.9×10^{-3} s. C) 68 s D) 120 s

Solution

$$\ln \frac{A_t}{A_0} = -Kt$$
$$\ln \frac{40}{100} = -t * 7.5 * 10^{-3}$$
$$t = 122 \text{ S}$$

20) The first-order reaction $SO_2Cl_2 \rightarrow SO_2 + Cl_2$ is 10% complete in 80. min. How long would it take for the reaction to be 95% complete?

- A) 1.8 min
- B) 104 min

- C) 530 min
- D) <u>2300 min</u>

Solution

 $\ln \frac{A_t}{A_0} = -Kt$ $\ln \frac{90}{100} = -k * 80$ $K = 1.3 * 10^{-3} \text{ min}^{-1}$ $\ln \frac{5}{100} = -1.3 * 10^{-3} * t$ t = 2304 min

Chemistry-2-ch.4.3 All in

الملخص الشامل - All in one

21) A certain reaction $A \rightarrow products$ is second order in A. If this reaction is 85% complete in 12 minutes, how long would it take for the reaction to be 15% complete?

- A) 110 s C) 62 s
- B) 27 s D) <u>22 s</u>

Solution

 $\frac{1}{A_{t}} - \frac{1}{A_{0}} = Kt$ $\frac{1}{85} - \frac{1}{100} = K * 12$ $k = 4.7 * 10^{-3} \text{m}^{-1} \text{S}^{-1}$ $\frac{1}{85} - \frac{1}{100} = 4.7 * 10^{-3} \text{m}^{-1} \text{S}^{-1}$ t = 22 S

22) For the reaction $X + Y \rightarrow Z$, the reaction rate is found to depend only upon the concentration of X. A plot of 1/X verses time gives a straight line.

23) The reaction $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ is suspected to be second order in NO₂. Which of the following kinetic plots would be the most useful to confirm whether or not the reaction is second order?

A) a plot of $[NO_2]^{-1}$ vs. t B) a plot of $\ln [NO_2]$ vs. t C) a plot of $[NO_2]$ vs. t D) a plot of $\ln [NO_2]^{-1}$ vs. t

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

Chemistry-2-ch.4.3 -

الملخص الشامل - All in one

24) The thermal decomposition of acetaldehyde, $CH_3CHO \rightarrow CH_4 + CO$, is a second-order reaction. The following data were obtained at 518°C.

time, s	Pressure CH ₃ CHO, mmHg
0	364
42	330
105	290
720	132

Calculate the rate constant for the decomposition of acetaldehyde from the above data.

- A) $2.2 \times 10^{-3}/s$
- B) 0.70 mmHg/s

C) 2.2×10^{-3} /mmHg·s

D) $6.7 \times 10^{-6}/\text{mmHg}\cdot\text{s}$

25) The thermal decomposition of acetaldehyde, $CH_3CHO \rightarrow CH_4 + CO$, is a second-order reaction. The following data were obtained at 518°C.

time, s	Pressure CH ₃ CHO, mmHg
0	364
42	330
105	290
720	132

Based on the data given, what is the half-life for the disappearance of acetaldehyde?

A)	$1.5 \times 10^5 \text{ s}$	C)	5.4×10^7 s
B)	410 s	D)	520 s

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

Chemistry-2-ch.4.3 الملخص الشامل - All in one

26) For the chemical reaction $A \rightarrow B + C$, a plot of $[A]_t$ versus time is found to give a straight line with a negative slope. What is the order of reaction with respect to A?

- A) <u>zeroth</u>
- B) first

- C) second
- D) Such a plot cannot reveal the order of the reaction

27) For the chemical reaction $A \rightarrow C$, a plot of $1/[A]_t$ versus time was found to give a straight line with a positive slope. What is the order of reaction?

- A) zeroth
- B) first

- C) second
- D) Such a plot cannot reveal the order of the reaction.

28) The graphs below all refer to the same reaction. What is the order of this reaction?

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

	Chemistry-2-ch 4 3		الملخص الشامل - no ما ال
29) Fo	or what order reaction does the hale entration increases?	f-lif	e get longer as the initial
A) <u>z</u>	zeroth order	C)	second order
B) 1	first order	D)	none of them because half-life is always independent of the initial concentration
30) F	or a second order reaction, the half	f-life	e is equal to
A)	$t_{1/2} = 0.693/k$	С) $t_{1/2} = 1/k[A]_{o.}$
B)	$t_{1/2} = k/0.693$	D) $t_{1/2} = k.$
31) W (k) fo A) B)	Which one of the following changes r the reaction $2A + B \rightarrow products^{4}$ increasing the concentration of A increasing the concentration of B	s wo ? C D) <u>increasing the</u> <u>temperature</u>) measuring k again after the reaction has run for a while