الملخص الشامل - All in one

Activation energy and temperature dependence of rate constant

\*Reaction rate increase with increasing temperature.



→ This figure shows atypical example of the relationship between the rate constant of a reaction and temperature.

Dependence of rate constant on temperature. The rate constants of most reactions increase with increasing Temperature.

#### The collision theory of chemical kinetics

Kinetic molecular theory of gases:  $\rightarrow$  postulates that gas molecules frequently collide with one another.

Collision theory of chemical kinetics:  $\rightarrow$  chemical reactions occur as a result of collisions between reacting molecules.

- Calculations based on the kinetic molecular theory shows that, at ordinary pressure (say, 1Atm) and temperatures (say, 298K) there are about (1\*10<sup>27</sup>) binary collisions (collisions between two molecules) in 1ml of volume every second in the gas phase.
- Even more collisions per second occur in liquid.



ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

2



If the products are more stable than the reactants, then the reaction will be accompanied by a release of heat to the surroundings. If the products are less stable than the reactants, then heat will be absorbed by the reacting mixture from the surroundings.

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

3

The Arrhenius equation : $\rightarrow$  The dependence of the rate constant of a reaction on temperature.

$$K = Ae^{-Ea/RT}$$

**Ea** : $\rightarrow$  activation energy of the reaction (KJ/mol).

 $R : \rightarrow$  gas constant (8.314 J/K.mol).

 $T \rightarrow the absolute temperature.$ 

 $\frac{1}{2}$   $\rightarrow$  The base of the natural logarithm.

 $A: \rightarrow$  The frequency factor.

 $A \rightarrow$  is constant for a given reacting system over a fairly wide temperature range.

## الملخص الشامل - All in one

#### From the above equation we note that:

- The rate constant is directly proportional to A and, therefore, to the collision frequency.
- The minus sign indicate that, the rate constant decreases with increasing activation energy and increase with increasing temp.

$$K = Ae^{-Ea/RT}$$
$$lnK = lnA - \frac{Ea}{RT}$$

The above equation can be rearranged as follow:

$$lnK = -\frac{Ea}{R}\left(\frac{1}{T}\right) + lnA$$

If we plot lnK versus  $\left(\frac{1}{T}\right)$ , this give a straight line whose slope is equal to  $-\frac{Ea}{R}$  and whose intercept is lnA

### Example

The rate constants for the decomposition of acetaldehyde  $CH_3CHO_{(g)} \rightarrow CH_{4(g)} + CO_{(g)}$ 

Were measured at five different temperatures. The data are shown in the table.

Plot ln k versus 1/T, and determine the activation energy (in kJ/mol) for the reaction.

Note that the reaction is "32" order in CH<sub>3</sub>CHO, so *k* has the units of  $1/M^{1/2}$ .*S* 

| $(1/M^2 \cdot s)$ | T (K) |
|-------------------|-------|
| 0.011             | 700   |
| 0.035             | 730   |
| 0.105             | 760   |
| 0.343             | 790   |
| 0.789             | 810   |
|                   |       |



#### **Solution**

| First we convert the data to the         |
|------------------------------------------|
| following table.                         |
| A plot of these data yields the graph in |
| the above Figure.                        |
| The slope of the line is calculated from |

two pairs of coordinates:

Slope =  $\frac{-4.00 - (-0.45)}{(1.41 - 1.24) \cdot 10^{-3} K^{-1}} = -2.09 \cdot 10^{4} K$ From the linear form of Equation  $slope = \frac{Ea}{R} = -2.09 \cdot 10^{4} K$ 

 $Ea = (8.134 \text{J/K.mol})(2.09*10^{4} \text{K})$ =1.74\*10<sup>5</sup> J/mol =1.74\*10<sup>2</sup> KJ/mol

ملخصات يوسف زويل-Top Team-دعم متواصل لأي سؤال-بالواتس- 00201095061057

الملخص الشامل - All in one \_\_\_\_\_  $\blacksquare$  An equation relating the rate constant  $K_1$ ,  $K_2$  at temperature  $T_1$ ,  $T_2$  can be used to calculate the activation energy.  $\ln \frac{K_1}{K_2} = \frac{Ea}{R} \left( \frac{T_1 - T_2}{T_1 T_2} \right)$ Example The rate constant of a first-order reaction is  $3.46 * 10^{-2} \text{ s}^{-1}$  at 298 K. What is the rate constant at 350 K if the activation energy for the reaction is 50.2 kJ/mol? Solution  $k_2 = ?$  $k_1 = 3.46 * 10^{-2} s^{-1}$  $T_2 = 350 \text{ K}$  $T_1 = 298 \text{ K}$  $\ln \frac{K_1}{K_2} = \frac{Ea}{R} \left( \frac{T_1 - T_2}{T_1 T_2} \right)$  $\ln \frac{3.46 * 10^{-2}}{K_2} = \frac{50.2 * 10^3}{8.314} \left[ \frac{298 - 350}{(298)(350)} \right]$  $\frac{3.46 * 10^{-2}}{K_2} = -3.01$ ln–  $\frac{3.46 * 10^{-2}}{K_2} = e^{-3.01} = 0.0493$  $K_2 = 0.702 \, S^{-1}$ 



|                                                                                                                                                                                               | Chemistry-2-ch.4.4                                                                           | AI    | الملخص الشامل - l in one |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------|--------------------------|--|
| Choose                                                                                                                                                                                        |                                                                                              |       |                          |  |
| 1)<br>chemi                                                                                                                                                                                   | is the minimum amount of entitical reaction.                                                 | nergy | required to initiate a   |  |
| A)                                                                                                                                                                                            | Heat of formation                                                                            | C)    | Activation energy        |  |
| B)                                                                                                                                                                                            | Heat of decomposition                                                                        | D)    | Thermal energy           |  |
| 2) is a temporary species formed by the reactant molecules as a result of the collision before they form the product.                                                                         |                                                                                              |       |                          |  |
| A)                                                                                                                                                                                            | intermediate                                                                                 | C)    | Activated complex        |  |
| B)                                                                                                                                                                                            | Transition state                                                                             | D)    | Both B and C             |  |
| <ul> <li>3) If the products are more stable than the reactants, then the reaction will be accompanied by of heat The surroundings</li> <li>A) absorbed-form</li> <li>C) Release-to</li> </ul> |                                                                                              |       |                          |  |
| B)                                                                                                                                                                                            | Increase- form                                                                               | D)    | None of them             |  |
| <ul><li>4) The expression of Arrhenius equation is</li></ul>                                                                                                                                  |                                                                                              |       |                          |  |
| A)                                                                                                                                                                                            | $K = Ae^{-Rt}$                                                                               | C)    | $A = Ke^{-Ea/Rt}$        |  |
| B)                                                                                                                                                                                            | $\underline{\mathbf{K}} = \mathbf{A}\mathbf{e}^{-\mathbf{E}\mathbf{a}/\mathbf{R}\mathbf{t}}$ | D)    | $K = e^{-Ea/Rt}$         |  |
| 5) The Arrhenius equation is $K = Ae^{-Ea/Rt}$ , the slope of a plot of lnK vs. 1/T is equal to                                                                                               |                                                                                              |       |                          |  |
| A)                                                                                                                                                                                            | -К                                                                                           | C)    | Ea                       |  |
| B)                                                                                                                                                                                            | К                                                                                            | D)    | <u>-Ea/R</u>             |  |
|                                                                                                                                                                                               |                                                                                              |       |                          |  |

Chemistry-2-ch.4.4 الملخص الشامل - All in one 6) The activation energy for the reaction  $CH_3CO \rightarrow CH_3 + CO$  is 71KJ/mol. How many times greater is the rate constant for this reaction at 170°C than at 150°C? C) 0.40 A) <u>2.5</u> D) 4.0 B) 1.1 Solution Ea = 71\*1000 J/mol  $T_1 = 170 + 273 = 443^{\circ}K$  $T_2 = 150 + 273 = 423^{\circ}K$  $\ln \frac{K_1}{K_2} = \frac{71 * 1000}{8.314} \left(\frac{443 - 423}{443 * 423}\right) = 0.91$  $\frac{K_1}{K_2} = e^{0.91} = 2.48$ 

7) If Ea for a certain biological reaction is 50 KJ/mol, by what factor will the rate of this reaction increase when body temperature increases from  $37^{\circ}C$  to  $40^{\circ}C$ ?!

- A) <u>1.20</u> C)  $2*10^5$
- B) 1.15 D) 1.0002

Solution

Ea = 50\*1000 J/mol  $T_1 = 37+273 = 310^{\circ}K$   $T_2 = 40+273 = 313^{\circ}K$   $\ln \frac{K_1}{K_2} = \frac{50 * 1000}{8.314} \left(\frac{310 - 313}{310 * 313}\right) = 0.185$  $\frac{K_1}{K_2} = e^{0.185} = 1.20$ 

| Chemistry-2-ch.4.4                                                                                                                                              | = الملخص الشامل - l in one |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| 8) The isomerization of cyclopropane follows first order Kinetics. The rate constant at 700K is $6.2*10^{-4}$ min <sup>-1</sup> , and the half-life at 760°K is |                            |  |  |  |
| 29.0min. Calculate the activation energy for this rxn.                                                                                                          |                            |  |  |  |
| A) 27.0 KJ/mol C)                                                                                                                                               | <u>270 KJ/mol</u>          |  |  |  |
| B) 5.07 KJ/mole D)                                                                                                                                              | 160 KJ/mol                 |  |  |  |
| Solution                                                                                                                                                        |                            |  |  |  |
| $T_1 = 700^{\circ}K$ $K_1 = 6.2 * 10^{-4} min^{-1}.$                                                                                                            |                            |  |  |  |
| $T_2 = 760^{\circ} K$ $K_2 = ? min^{-1}$ .                                                                                                                      |                            |  |  |  |
| $t_{1/2} = 29$                                                                                                                                                  |                            |  |  |  |
| $K_2 = \frac{ln2}{t_{1/2}} = \frac{ln2}{29} = 23.9 * 10^{-3} \text{ min.}$                                                                                      |                            |  |  |  |
| $\ln \frac{K_1}{K_2} = \frac{Ea}{R} \left( \frac{T_1 - T_2}{T_1 T_2} \right)$                                                                                   |                            |  |  |  |
| $\ln\frac{6.2 * 10^{-4}}{23.9 * 10^{-3}} = \frac{\text{Ea}}{8.314} \left(\frac{700 - 760}{700 * 760}\right)$                                                    |                            |  |  |  |
| Ea = 270 KJ/mole                                                                                                                                                |                            |  |  |  |

Chemistry-2-ch.4.4 الملخص الشامل - All in one 9) The isomerization of methyl isocyanides,  $CH_3NC \rightarrow CH_3CN$ follows first-order kinetics. The half-lives were found to be 161min at 199°C and 12.5min at 230°C. Calculate the activation energy for this reaction. A) 6.17\*10<sup>-3</sup> KJ/mol C) 124 KJ/mol D) <u>163 KJ/mol</u> B) 31.4 KJ/mol Solution  $K_1 = \frac{ln2}{t_{1/2}} = \frac{ln2}{161} = 4.3 \times 10^{-3} \text{ min}^{-1}.$  $T_1 = 199 + 273 = 472 \text{ °K}$  $K_2 = \frac{ln2}{t_{1/2}} = \frac{ln2}{12.5} = 55 * 10^{-3} \text{ min}^{-1}.$  $T_2 = 230 + 273 = 503 \text{ °K}$  $\ln \frac{K_1}{K_2} = \frac{Ea}{R} \left( \frac{T_1 - T_2}{T_1 T_2} \right)$  $\ln \frac{4.3 * 10^{-3} \text{ min.}}{55 * 10^{-3} \text{ min.}} = \frac{\text{Ea}}{8.314} \left(\frac{472 - 503}{472 * 503}\right)$ Ea = 162.5 = 163 KJ/mole