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•  Solving a Quadratic Equation 

•  Completing the Square 

•  The Quadratic Formula 

•  Solving for a Specified Variable 

•  The Discriminant 

 

• 2.3 - Quadratic Equations 
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Quadratic Equation in One Variable 

An equation that can be written in the form 

  2 0ax bx c

where a, b, and c are real numbers with a ≠ 0, is a quadratic equation.  

The given form is called       standard form. 
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Second-degree Equation 
A quadratic equation is a second-degree equation—that is, an 

equation with a squared variable term and no terms of greater 

degree. 

2 2 225, 4 4 5 0, 3 4 8x x x x x     
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Zero-Factor Property 

 

If a and b are real numbers with  

ab = 0, then a = 0 or b = 0  

or both equal zero. 
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Example 1 

USING THE ZERO-FACTOR PROPERTY 

Solve 26 7 3.x x 
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Square Root Property 

A quadratic equation of the form x2 = k can also be solved by factoring. 

2x k
2 0x k 

   0x k x k  

or0x k  0x k 

x k or x k 

Subtract k. 

Factor. 

Zero-factor property. 

Solve each equation. 
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Square Root Property 

If x2 = k, then 

.x k or x k  
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Square-Root Property 

That is, the solution set of 2x k is

 , ,k k  .k

If k = 0, then there is only one distinct solution, 0,  sometimes 

called a double solution. 

Both solutions are real if k > 0,  

and both are pure imaginary if k < 0.  

If k < 0, we write the solution set as 

 .i k

which may be abbreviated 
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Homework1 

USING THE SQUARE ROOT PROPERTY 

(a) 2 17x 

Solve each quadratic equation. 

(b) 2 25x  

(c) 2( 4) 12x  
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Solving a Quadratic Equation  

by Completing the Square 
To solve ax2 + bx + c = 0, where a ≠ 0, by completing the square, use these steps. 

 

Step 1  If a ≠ 1, divide both sides of the equation by a. 

Step 2  Rewrite the equation so that the constant term is alone on one side of the 

equality symbol. 

Step 3  Square half the coefficient of x, and add this square to each side of the equation. 

Step 4  Factor the resulting trinomial as a perfect square and combine like terms on the 

other side. 

Step 5  Use the square root property to complete the solution. 
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Example 2 

USING COMPLETING THE SQUARE (a = 1) 

1-      x2 – 4x – 14 = 0. 

 

2-      9x2 – 12x + 9 = 0. 
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The Quadratic Formula 

If we start with the equation ax2 + bx + c = 0,  

for a > 0, and complete the square to solve for x 

in terms of the constants a, b, and c,  

the result is a general formula  

for solving any quadratic equation. 
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Quadratic Formula 

The solutions of the quadratic equation  

ax2 + bx + c = 0,  

where a ≠ 0,  

are given by the quadratic formula. 

2 4

2

b b ac
x

a
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           Caution  Remember to extend the fraction bar in 
the quadratic formula extends under the – b term in the 
numerator. 

2 4

2

b b ac
x

a
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Example 3 

USING THE QUADRATIC FORMULA (REAL SOLUTIONS) 

Solve x2 – 4x = – 2.   
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Homework 3 

USING THE QUADRATIC FORMULA (NONREAL COMPLEX SOLUTIONS) 

Solve    2x2  = x – 4.   
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Cubic Equation 

The equation x3 + 8 = 0 is called a cubic equation because 

the greatest degree of the terms is 3.   
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Example 4 

SOLVING A CUBIC EQUATION 

Solve  3 8 0.x  

Solution 
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Solving for a Specified Variable 

      Note,  

              we took both positive and negative square roots.  

However, if the variable represents time or length in an 

application, we consider only the positive square root. 
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Homework 4 

SOLVING FOR A QUADRATIC VARIABLE IN A FORMULA 

Solve for the specified variable.  Use  when taking square roots. 

(a) 
2

,  for 
4

d
A d
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Homework 4 

SOLVING FOR A QUADRATIC VARIABLE IN A FORMULA 

Solve for the specified variable.  Use  when taking square roots. 

(b) 2 ( 0), for rt st k r t  
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The Discriminant 
The Discriminant  The quantity under the radical in the 

quadratic formula,  

b2 – 4ac    ,      is called the discriminant.   

2

2

4ab

a

b
x

c 


Discriminant 
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The Discriminant 
Discriminant 

Number of 

Solutions 
Type of Solutions 

Positive, perfect square Two Rational 

Positive, but not a perfect square Two Irrational 

Zero 
One  

(a double solution) 
Rational 

Negative Two Nonreal complex 
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         Caution  The restriction on a, b, and c is important.  
For example,  

  2 5 1 0x x

has discriminant b2 – 4ac = 5 + 4 = 9, which would indicate 

two rational solutions if the coefficients were integers.   

By the quadratic formula, the two solutions  

 

 

are irrational numbers. 
5 3

2
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Example 5 

USING THE DISCRIMINANT 

Determine the number of distinct solutions, and tell whether they 

are rational, irrational, or nonreal complex numbers. 

(a) 
25 2 4 0x x  

(b) 
2 10 25x x  

(c) 
22 1 0x x  
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